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INTRODUCTION

The advent of modern computing devices and their application to time-series analyses permits the
investigation of mathematical and astronomical relationships on an unprecedented scale. Since neither
numerical complexity nor calculation intensity pose insuperable difficulties, it becomes feasible to treat
single events sequentially and apply detailed time-series analyses to the results. The following discussion
is primarily concerned with the real-time heliocentric motions of the four major superior planets
(Jupiter, Saturn, Uranus and Neptune) and the four terrestrial planets (Mercury, Venus, Earth and
Mars), plus their various interactions. Shown in graphical form in the second section, the final outputs
were based initially on the single-event formulas provided by Bretagnon and Simon (1986) adapted to
produce time-series data utilizing spreadsheet techniques.

A. THE MAJOR SUPERIOR PLANETS

The methodology and formulas applied to planetary motion in this context are provided by Pierre
Bretagnon and Jean-Louis Simon in Planetary Programs and Tables from - 4000 to +2800 (Willman-Bell,
Richmond, 1986). The astronomical programs in the latter concern the determination of the positions
of the planets as viewed from Earth (i.e., geocentric coordinates with corrections for aberration,
nutation, and precession, etc). The first stage of the computation, however, concerns the determination
of heliocentric coordinates which for Jupiter, Saturn, Uranus and Neptune are obtained from the
following power series formulas:
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The parameter V is measured in units of 2000 julian days from the beginning of successive five-year
intervals; units are radians for L and B and astronomical units (AU) for R. The motions and positions
of Jupiter, Saturn, Uranus and Neptune are obtained from power series data provided for five-year
intervals, e.g., for the period 1990 to 1995 commencing with Julian Day 2447892.5 the power series
data are as follows (Bretagnon and Simon 1986:124,140).—
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JUPITER
1990 2447892.5
L) 1.678682 2.956725 -0.414596 0.004826 0.299734 -0.151349 0.029332
B) -0.005204 .067083 -0.000759 -0.109760 0.078191 -0.029462 0.007110
R) 5.155577 0.717884 0.187303 -1.133334 0.310164 0.141854 -0.042529

o

SATURN
1990 2447892.5
L) 4.993758 1.054503 0.014505 0.023160 -0.000553 -0.000863 -0.000059
B) 0.005629 -0.045382 -0.003796 0.007466 0.000345 0.000362 -0.000177
R) 10.027146 -0.144092 -0.300680 0.032117 0.003847 0.022473 -0.008193

URANUS

1990 2447892.5

L) 4.808885 0.401780 -0.0073%96 0.001186 -0.000138 -0.000220 0.000115
B) -0.004951 -0.000503 0.000528 -0.000054 0.000306 -0.000299 0.000108
R) 19.380045 0.357595 -0.005398 -0.008060 -0.013812 0.011760 -0.004261

NEPTUNE
1990 2447892.5
L) 4.923200 0.207762 0.000166 0.000853 -0.000671 0.000373 -0.000118
B) 0.015270 -0.005562 -0.000339 0.000013 0.000032 -0.000016 0.000004
R) 30.210400 -0.047301 0.013832 0.001610 -0.018511 0.014834 -0.005138

The first line gives the starting year of the five year time-span followed by the initial julian day
(January 1) at 0" ET. The second line gives the seven coefficients of the polynomial for the heliocentric
longitude L, the third the coefficients for the heliocentric latitude B, and the forth the coefficients for
the heliocentric radius vector R.

TIME
Ephemeris Time (ET) with the variable V(t) obtained from the following relation:
y_ ET-T, |4
2000 4]

where T, is the beginning julian date for the five year time-span and T ' the required instant (or
successive instants) for the superior planet(s) in question. V(t) ranges from 0 to 0.915.

REAL-TIME PLANETARY ORBITS

Plan-view plots of planetary orbits require the computation of the heliocentric longitude (L) and the
heliocentric radius vector (R) for successive values of V within a given time-span. However, none of the
major superior planets have sidereal periods that are shorter than five years thus the computation of each
orbit entails the use of successive five-year data sets. For one complete orbit of Jupiter, a minimum of
two sets of data is required; for Saturn five, Uranus seventeen, and for Neptune thirty-three. For the
interval 1600-2100 BP, one hundred consecutive sets of power series data are therefore required for
each planet.
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B. THE FOUR TERRESTRIAL PLANETS

In contrast to the relatively simple power-series methodology for the major superior planets, formulas
for the terrestrial planets are both cumbersome and difficult to implement in times-series format
without the heavy use of computing devices. Here the formulas vary from planet-to-planet and all
require tables and lengthy trigonometric summations. For example, in the case of Mercury the formulas
and tables for the heliocentric radius vector (R), the heliocentric latitude (B) and heliocentric longitude
(L) are as follows:

MERCURY: HELIOCENTRIC RADIUS VECTOR ( R)

14
R =0.3952020+107"x Z ricos(ai+vilU) [5a]

i=1

TABLE 1:i =1to 14

[ r, a, v,
1 780141  6.202782 260878.753962
2 78942 2.98062 521757.50830
3 12000 6.0391 782636.2640
4 9839 4.8422 260879.3808
5 2355 5.062 0.734
6 2019 2.898 1043514.987
7 1974 1.588 521758.140
8 1859 0.805 260877.716
9 426 4.601 782636.915
10 397 5.976 1304393.735
11 382 3.86 521756.47
12 306 1.87 1043515.34
13 102 0.62 782635.28

14 92 2.60 1565272.52
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MERCURY: HELIOCENTRIC LATITUDE ( B)

18
B=10"x Zﬁfsin (ai+wU) [5b]

i=1

TABLE 2:i =110 18

I b. a; V;

1 680303 3.82625 260879.17693
2 538354 3.30009 260879.66625
3 176935 3.74070 0.40005
4 143323 0.58073 521757.92658
5 105214 0.05450 521758.44880
6 91011 3.3915 0.9954
7 47427 1.9266 260878.2610
8 41669 3.5084 782636.7624
9 19826 3.1539 782637.4813
10 12963 0.2455 1043515.6610

11 8233 4.886 521756.972
12 6399 0.358 782637.769
13 3196 3.253 1304394.380
14 1536 4.824 1043516.451
15 824 0.04 1565273.15
16 819 1.84 782635.45
17 324 1.60 1304395.53
18 201 2.92 1826151.86

MERCURY: HELIOCENTRIC LONGITUDE ( L)

L = 4.4429839+260881.4701279U+10"°{(409894.2+2435U-1408U *+114U *+233U ‘-88U °)
X sin(3.053817+260878.756773U-0.001093U *+0.00093U *+0.00043U “+0.00014U °)}

o
22

+107x Y Lisin(ai + vU) [5c]

i=1



TABLE 3:1 =1t025

I 1 a v,
1 510728 6.09670  521757.52364
2 404847 472189 1.62027
3 91048  2.8946 782636.2744
4 30594  4.1535 521758.6270
5 15769  5.8003  1043515.0730
6 13726 0.4656 521756.9570
7 11582 1.0266 782638.007
8 7633 3517 521759.335
9 5247  0.418 1043516.352
10 4001  3.993 1304393.680
11 3209 2791 1043514.724
12 3212 0.209 1304394.627
13 1690  2.067 1304395.168
14 1482 6.174 782635.409
15 1233 3.606 1043516.88
16 1152 5.856 1565272.646
17 845 2.63 1565273.50
18 654 3.40 1826151.56
19 359 2.66 11094.77
20 356 3.08 1565273.50
21 257 6.27 1826152.20
22 246 2.89 5.41
23 180 5.67 56613.61
24 159 457 250285.49
25 137 6.17 27197350

HELIOCENTRIC RADIUS VECTORS: VENUS, SUN (EARTH) AND MARS

In so much as the present paper is an introduction rather than a detailed description the corresponding
formulas and tables for the longitudes and latitudes of the other terrestrial planets will not be presented
here in toto. For general information, however, a limited treatment of the remaining heliocentric radius
vectors for this trio of planets is shown below; for further details refer to the descriptions and
explanations provided by Bretagnon and Simon (1986).
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VENUS: HELIOCENTRIC RADIUS VECTOR ( R)

R = 0.723 5481+10 7 {(48982-34549U+7096U?3360U +890U *-210U ®
X c0s(4.02152+102132.84695U+0.2420U 2+0.0994U *+0.0351U *-0.0013U 5-0.015U ©)}
+ 107{(166-234U+131U 2) x cos(4.90+204265.69U+0.48U 2+0.20U )}

a
+107'x > ricos(a+wl) [6]
i=1

TABLE4:i =1to5

i I, a; v,
1 72101 2.828 0.361
2 163 2.85 78604.20
3 138 113 117906.29
4 50 2.59 96835.94
5 37 1.42 39302.10

SUN (EARTH): HELIOCENTRIC RADIUS VECTOR [Table 5: i =1 to 50 omitted ]

50
R =10001026+10""x Z ricos(ai+vilU) [7]
i=1

MARS: HELIOCENTRIC RADIUS VECTOR ( R) [Table 6: 1 =1 to 29 omitted ]

R =1.5298560 + 10°{(141 849.5 +13651.8U-1230U *-378U * + 187U *-153U °-73U °)
c0s(3.479698+33405.349560U+0.030669U7 -0.00909U°+0.00223U*+0.00083U°-0.00048U°)}
+10°{(6607.8 +1272.8U-53U *-46U *+14U “-12U *+99U °)x

c0s(3.81781+ 66810.6991U+ 0.0613U 2-0.0182U°+0.0044U “+0.0012U °+0.002U°)}
2
+107'x > ricos(ai+ vilU) [8]
i=1

TIME
Ephemeris Time (ET) with the variable (U)t obtained from the following relation:

B ET —2451545 9]
3652500
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C. HELIOCENTRIC RADIUS VECTORS
Although relations [9] and [4] require additional corrections for historical research, for present purposes
it is more useful to remain with julian dates throughout since the latter lend themselves readily to
looping and incrementation in a variety of complex applications. Moreover, although it still remains
feasible to calculate the planetary positions by applying related formulas for the heliocentric distances,
longitudes and latitudes in standard manner, itis the heliocentric distances that are by far the most useful.
The exact sequential value for the radius vector of a planet moving in an elliptical orbit carries with
it both corresponding orbital velocities and orbital "periods" for the exact position and time in question.
In other words, the variable radius vector that moves between the limits established by the points of
perihelion and aphelion provides two further related time-series functions. The first describes the
manner in which the radius vector changes, the second the orbital velocity itself, and the third—though
not immediately apparent—the corresponding "range™ of the period of revolution. To put the latter in
a clearer light, the mean synodic time (Ts) between a pair of co-orbital planets—essentially the time a
faster moving inner planet (mean orbital period T1) takes to lap a slower outer planet (mean orbital
period T2 ) may be obtained from the general synodic formula:

T2.T1
T2-Th

In practice, however, adjacent pairs of planets are rarely both precisely at the particular points in their
orbits that correspond to their respective mean value radius vectors. Thus the mean synodic period
remains basically a theoretical parameter. From a more practical viewpoint, however, for every value of
the radius vector between perihelion and aphelion there are corresponding "periods" of revolution, and
as a consequence, real-time synodic functions may be determined directly from the resulting radius
vectors by the application of the Harmonic Law ( T 2= R®). For the superior planets this poses no great
problem since true radius vectors may be obtained from power series data and associated tables in a
relatively straightforward manner. For the terrestrial planets the same basic approach holds, except that
the more complex formulas and tables are involved. Both methods, however, lend themselves readily
to looping and incrementation and all provide the means for investigating interactive relationships.
Examples of the latter include visualization of the well known 2 : 1 Earth-Marsand 2 : 5 Jupiter-Saturn
resonances, relationship between differences in inverse orbital velocities of the latter pair and the orbital
velocity of Mars. The latter and further complexities associated with Venus-Earth-Mars resonances are
examined briefly in Part Two.

Synodic Period (T) = (T2>Ty [10]

SOURCE
Part C and Relation 10 excepted, the above formulas, tables, power series data and general methodology
are from Bretagnon and Simon(1986):—

TABLES FOR THE MOTION OF THE SUN AND THE FIVE PLANETS FROM - 4000 TO + 2800
TABLES FOR THE MOTION OF URANUS AND NEPTUNE FROM + 1600 TO + 2800

Pierre Bretagnon and Jean-louis Simon.
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