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T H E   C A L E N D A R

(Thom 1971:107–117 )

THE activities of early man were controlled just as ours are by the movements of the sun.
So if he used a calendar it had to be related to the sun. As an approach to the subject it
is perhaps best to forget for the moment about declinations, etc., observed at the sites and
to consider what would be the ideal method of establishing and using a solar calendar
assuming that it is to be based on observations of the sun made without instruments as
we know them today. The Egyptians seem at one time to have controlled their calendar
by observing what are called heliacal risings of certain bright stars, but this method is
unsuited to northern countries with their long twilight. Moreover, the movement of the
sun along the horizon is much greater in Britain than it is in Egypt and so more suitable
as a calendar. It follows that we need have no hesitation in passing over the heliacal rising
method and concentrating on a calendar controlled by observing the sun's position on
the horizon.

We think naturally of dividing the year into four parts by the solstices and equinoxes.
But these four times do not divide the year equally. They would do so only if the Earth's
orbit were a circle. The modern definition of the equinox is the instant when the sun's
declination is zero. But without instruments we cannot determine this instant. What we
can do is to define the equinoxes as those two days which divide the year into two equal
parts and on which the sun has the same declination, that is the same rising point. So we
set up a mark S to show the position of the rising sun on a day in spring, the day being
so chosen (by trial and error) that the mark serves also for a day in autumn half a year
later. These two days of the year are thus fixed by the mark S for all future years.

It will be shown that the dates so determined are near the equinoxes but not exactly
at the time when the sun's declination is zero. They are the times when the declination
is about +0��5. This is, for our investigation, fortunate because if, in the field, we find
marks for declinations definitely between 0 and 1� we know we are thinking along the
right lines.

Now suppose we wish to divide the year into eight and set up a mark showing the
rising point one-eighth of a year after our vernal equinox, that is May Day. Will this
mark also serve for Lammas if we define Lammas as being the day one-eighth of a year
before the autumnal equinox? To give precision to this question it is necessary to define
what is meant by one-eighth of a year (in days) and then make the necessary calculations 
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from our knowledge of the Earth's orbit at the time in which we are interested, say 2000
to 1600 B.C.

Let us anticipate and say that in Megalithic remains we do find definite evidence of
this kind of division of the year. We saw that when Megalithic man subdivided his units
of length he used halves, quarters, and eighths so we need not be surprised to find his year
similarly divided. But we also saw that he was capable of measuring long distances
counting in tens. He would certainly also count days, otherwise how did he divide the
year into two ? His obsession with numbers may have led him to produce a calendar
which would be numerically correct just as he was led to attempt to produce circles and
ellipses which were rational in all their dimensions. Following the method used above we
shall try how nearly we can get to an ideal calendar using the methods available to these
people, but first we must clear up one or two points.

The reader may have wondered what we meant when we spoke above of half a year,
since the tropical year (equinox to equinox) consists of 365� days, and half a year is 182�
days. Having set up our mark S and seen the sun rise exactly on it on a day in the spring
we may have arranged matters so that the sun rises again on the mark after 182 days or
after 183 days but certainly not after 182� days. That would be in the afternoon.

Starting at the declination corresponding to either the 182- or the 183-day arrange-
ment it takes the sun 365� days to complete a cycle and again come back to that
declination. So when it rises after 365 days the declination will not have attained its
initial value but will be about 0��1 too small. We have seen that if the mark is a good
natural foresight it is capable of showing up a very much smaller error than this. In
successive years the error will grow until after four years the sun will be late by a whole
day and so will be exactly on the mark the following morning.

From the time of Julius Caesar our calendar has inserted that extra day every fourth
year. Was the necessity to introduce a leap year known to Megalithic man ? We shall see
that it is certain that he used a solar method of keeping a calendar and that it depended
on horizon marks subdividing the year. But each mark must have been established by
counting days from a zero date in the year, and each mark served to define two different
epochs, one in the spring half of the year and one in the autumn half. It not only took
years of work to establish these marks but many more years to transport and erect the
huge permanent backsights. In the interval the marks would have got so badly out as to
be useless if an intercalary day were not inserted.

It is true that these people, having set up the mark, might have stopped keeping a tally
of days, simply leaving the marks to give the indications. But the Megalithic culture was
widespread and communication essentially slow. To transfer the 'date' from one end of
the system to the other meant that the messengers must have counted days as they
travelled and having arrived at an isolated community the counting had to go on until
a year with suitable weather allowed the marks to be set up. The alternative is to assume 
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that each community began independently the arduous task of establishing its own
calendar epochs. This is indeed possible, but when we find indications of the same declin-
ations in Cumberland, Lewis, Wales, and Caithness we must consider the possibility that
the calendar dates throughout this wide area were in phase.

The sixteen-month calendar
As the author collected more and more reliable lines from the sites certain groups of
declinations began gradually to appear in positions on the histogram which were difficult
to explain. These were at or near –22�, –8�, +9�, and +22�.  The group at +9� might be
ascribed to Spica at 1700 B.C., but there were no convenient stars to explain the others.
If they are solar then we seek the times of year at which the sun had these declinations.
Accepting these dates, we find that with the fully established solstices, equinoxes,
May/Lammas, and Martinmas/Candlemas days the year is divided into sixteen equal
parts. The data in the field on which these subdivisions rest is sufficiently convincing and
reliable to make it necessary to go into the matter in detail. We must calculate the sun's
declination throughout the year. The necessary formulae are given on p. 24. The
constants defining the Earth's orbit will be taken for 1800 B.C. as being representative
of the years from say 2000 to 1600 B.C. The values are:

Obliquity of the ecliptic  = � = 23��906, 

Longitude of sun at perigee = � = 218��067, 

Eccentricity of orbit   = e = 0.0181.

Having used these to calculate the sun's declinations and plotted these declinations we
obtain a curve like that shown in Fig. 9.1. This attains a maximum of +23��91 at the
summer solstice and a minimum of – 23��91 at the winter solstice. As already explained,
the two lobes are not of equal length so we take three points S, A, and S' such that SA =
AS' and find that the declination at these points is +0�.51. We have seen, however, that
we cannot divide the year for our present purpose into two equal parts but must take SA
as being either 182 days or 183.  In Thom, 1966, 182 was used. Here we shall take 183.

1 1Obviously to get 183 days (instead of 182�) the line S  A  must be lowered slightly.

It is now necessary to find the ideal declinations for the other calendar epochs. On Fig.
9.1 we require to find six declinations, represented by three horizontal dotted lines in the
positive lobe and three in the negative lobe. Each horizontal line gives a date at each end
and the problem is to arrange matters so that these dates with the equinoxes and solstices
divide the year as nearly as possible into sixteen equal parts, which we shall call 'months'. 
The solution referred to above restricted a month to  22  or  23 days.  The criterion of 
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a good solution is that the declinations must pair, that is the day in the autumn should
have the same declination as the corresponding day in the spring. The solution obtained
by the 22/23-day month did not give very good pairing. Accordingly, it was decided to
try to find from the observed declinations what solution Megalithic man had obtained. 

Weighted means for the six necessary declinations (seven with the equinoctial value) were
formed from the observed values in Table 8.1. Using these the corresponding dates were
read off (two for each mean declination) from a large-scale plot of the theoretical
declination curve (Fig. 9.1).

It is remarkable that this procedure led to a much better solution than had previously
been found. The arrangement of the 'months' is shown in Table 9.1, from which it will 
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be seen that there are 4 months with 22 days, 11 with 23, and 1 with 24. Column 3
shows the number of days from the zero day, the vernal equinox. The calculation of the
exact declination at the various epochs is connected with the question of how the
intercalary day was inserted. Let us take it that an extra day was given to the years T– 2,
T+2, T+6, etc.  Ideally the azimuthal lines should be erected to suit the year T. They will
then be correct also for the years T+4, T+8, etc., and they will show the greatest errors in
the years T+2, T+6, etc. So we have to search for the best solution, ascribe this to the year
T, and calculate the errors for the years T+2, T+6, etc.

    Having accepted the arrangement of months shown in column 2 them is still a
disposable constant, namely, the exact instant of zero time for calculation purposes. This
must be chosen to give the best possible 'pairing' of the declinations.

oPut           �  = declination at epoch 0,
1�  =              ,,        ,,        1,

etc.

1 o 8Then put e  = �  — � ,
2 1 7e  = �  — � ,

7and so on up to e , forming similar values for setting times.

o MThe ideal value of zero time t  is that which makes the root mean square (e ) value of
o o othe fourteen values of e a minimum. Two values of t  were tried, namely  t  = 0 and  t  =

– 0�4 days. It is the solution corresponding to the latter value which is given in Table 9.1,
where we accordingly write – 0�4 as the time of sunrise on the zero epoch. After 23 days
the sun rises about 0�04 days earlier in the morning (and sets 0�04 days later at night). So
the interval to the next sunrise is not 23 days but 22�96, and the time of sunrise is 22�96
added to – 0�4 or 22�56 days. In this way column 4 is built up.

We now convert these values to 'longitude of dynamic mean sun' (l) by multiplying
by 360/365� and then using the formulae on p. 24 we can calculate the sun's declination
at sunrise on the first day of each month. A similar calculation is made for sunset on the
same days. The results are given in columns 5 and 6.  Finally column 7 contains the
changes which take place in two years and so shows the maximum error in the leap-year
cycle of four years. We must now make sure that we have used the best possible value for
o 1 2t .  To do this we calculate the values of  � , �  , etc. for rising and setting. Summing the

squares of these shows a mean value of about 0��18, a highly satisfactory result.

oRepeating the calculation for t  = 0 shows a much higher mean error of about 0��30.
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There is now enough information to enable us to write each value of e as

o� = a + bt

where the numerical values of a and b are found by comparing the two solutions. It
follows that

Differentiating and equating to zero shows that this is a minimum when

oMaking the relatively short calculation indicated we find t  = – 0�47. Fortunately this
is so near to the value used (– 0.40) in Table 9.1 that there is no need to repeat the
calculation. We shall accordingly accept the values in that table as the best possible
arrangement. Since it is impossible to obtain perfect pairing we form the mean
declination for each pair. We find that these mean values are practically identical for the
sunrise and sunset declinations. This comes about because for each pair the rate of fall of
the declination in the autumn is nearly the same as the rate of rise in the spring. These
means, which are the ideal values we must expect if Megalithic man's calendar was
identical with that set out in Table 9.1, will be found below the table.

For those who do not want to follow through the above reasoning the results can be
stated thus.

If Megalithic man wanted

(1) a calendar of sixteen nearly equal divisions of the year,
(2) marks erected on the horizon to show the rising and setting positions
     of the sun at the sixteen necessary epochs,
(3) each mark to serve for two of these epochs, one in the spring half of
     the year and one in the autumn half,

then there was no better method available than to set the marks for the declinations
shown below Table 9.1.

Instead of obtaining the necessary declinations by trial calculations we imagine
Megalithic man experimenting for years with foresights for the rising and setting sun. We
do not know how sophisticated his calendar was, but the interesting thing is that he
obtained declinations very close to those we have obtained as the ideal. The comparison
can be seen roughly on Fig. 8.1 where the sun's declination at the various epochs is shown
by a circle, but the scale is too small to show detail. Accordingly the parts of the
histogram near and around the germane declinations have been drawn to a larger scale
in Fig. 9.2. The conventions used for showing the observed declinations are generally
similar to those of the main histogram, but relative to the declination scale the gaussians
are much smaller. Look first at the observed declinations near the solstices. The circle
drawn to represent the sun is of such a size as to show the spread of declination produced 
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by the sun's diameter. A majority of the observed declinations lie to the right of the disk
at both solstices, showing that the upper limb was favoured. That is, the foresight was
usually chosen to show the first appearance of the upper edge in the morning or the last
at setting. There would appear, however, to be one or two reliable lines showing the sun
as it left the horizon in the morning or as it touched it in the evening.

For the other fourteen epochs the declinations calculated for the ideal calendar are
shown by little black rectangles, the width of each rectangle showing the unavoidable
spread of the declination in the four years of the leap-year cycle. The two rectangles at the
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top of each section show the rising declinations at the two paired epochs, the
displacement of the one relative to the other being the amount by which the solution falls
short of perfect pairing, the e of the analysis. All this is for the sun's centre: the limits for
the upper and lower limb are shown by the ends of the curve drawn to embrace each
rectangle. The calculated setting declinations are shown in the same convention at the
bottom of the figures. As already explained, the mean rising and setting declinations are
equal, but the spread may be very different.

In comparing with the observed declinations shown by the gaussians it must be
remembered that many of these, for one reason or another, may be uncertain by perhaps
±0�25, rather more than is indicated by the gaussians. In spite of this the agreement is
good, but when the comparison is restricted to those lines which can be considered to be
precise we get excellent confirmation. This is brought out in Table 9.2, which contains
all those lines where the declination is considered to be known to ±0�1. The difference
between using the upper and the lower limb (on a level horizon) is shown by the two

Evalues of the expected declination (� ) shown at the head of each column. These values
are the means shown below Table 9.1 with ±0�22 added. For indicated foresights with
a mountain slope nearly parallel to the path of the setting sun the range would be rather
greater (±0�27), being in fact the sun's semidiameter.

It will be seen that we have here conclusive proof that the erectors succeeded to a
remarkable degree in getting a reliable calendar of the kind we have developed on
theoretical grounds.



THE CALENDAR 115

Later, brief notes will be given of the reliable calendar sites in Britain, but we may here
draw attention to an interesting site near Watten in Caithness (N 1/15). The lines from
this site are not included in the histograms or in the main table but they have been
included in Table 9.2, above. All that is left at this site is a 6-ft standing stone, a large
fallen stone, and an artificial depression, but on looking to the south-west one sees a
number of mountain peaks projecting behind an almost level middle distance (Fig. 9.3).

Four of these are well defined with the fight-hand slope giving the necessary conditions
for a perfect foresight. The author was so struck by the possibilities that these were
carefully measured up and the azimuths of two calculated geodetically from the Ordnance
Survey. The particulars for the foot of the slopes are given below.

In a position like this with distant peaks seen from relatively level ground it is of course
possible to choose a position from which two of the peaks will have the required
declinations, but it is very unlikely that a third peak will be in a position to give a third
declination. Morven and Small Mount suit the lower and upper limbs of the sun, while
Ben Griam Beg is only wrong by 0��09 for the upper limb. Smean is slightly too far to
the left for the solstitial sun and would necessitate an observing position a short distance
to the east. Nevertheless it seems likely that this is a genuine calendar site.
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A possible further subdivision
The improbability that the year was further subdivided into 32 parts of 11 or 12 days is
considerably lessened by the accuracy with which certain otherwise unexplained lines
support such a subdivision. As some of the lines are Class A it may be desirable to give
the evidence and leave it there for future work to decide the matter. As before, guidance
in choosing the epochs was obtained partly from the observed declinations and partly
from pairing. Ultimately almost complete pairing was obtained with epochs which, it will
be seen (Table 9.3, below), retain the eleven- or twelve-day interval, which would thus
very likely apply to the whole year although the evidence at present only exists for
twenty-four epochs. The calculated declinations for the four necessary extra pairs are
given in the table.

It will be seen that the pairing is very good. The next table (Table 9.4) contains the
observed lines as extracted from the main table. Since these lines all have level horizons
the comparisons should be made with the mean values from the above table ±0��22 .

The agreement shown with the expected declinations is so good that the possibility that
the year was divided into periods of eleven and twelve days must be examined further as
data become available.
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It is proposed here to call the extra dates suggested above 'intermediate calendar dates'.

The exact time of the solstices
Looking at the formulae used for the calculation of the declination we see that the
declination was a maximum when �, the sun's longitude, was �/2.  From the relation
between � and l we find that l was then 92��08, which is equivalent to 93�4 days. From
Table 9.1 we see that this was 0�9 days after sunrise on the fourth epoch. Similarly the
winter solstice was 0�7 days after sunrise on the twelfth epoch. Twenty-four hours after
the solstice the declination has only fallen by some 12 seconds of arc, which would hardly
be detectable. How then does it come about that the solstices were known so accurately
? The explanation lies in that the epochs on either side of the solstice were arranged to be
the same number of days from the solstice, namely twenty-three days for both summer
and winter. This is still one more example of the care with which the calendar was
arranged. At a site like Ballochroy (see p. 151) they could satisfy themselves that the
declination really was a maximum even though the change was not perceptible for a day
or two.

***

Chapter 9: The Calendar, A. Thom, Megalithic Sites in Britain,
Clarendon Press, Oxford, 1971:107–117.
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I N D I C A T I O N S   O F   L U N A R   D E C L I N A T I O N S

(Thom 1971:118–121)
ONE is inclined to think of the moon as occupying a great range of positions in the sky
and so the tendency is to dismiss the moon with the thought that almost any line will
show its position on the horizon sooner or later.  But we have seen on p. 21 that there are
four limiting declinations and it is for these that we must look. We shall see that these
positions were considered important and were marked very definitely.

The obliquity of the ecliptic at 1800 B.C. was 23��91 and the mean value of the
inclination of the moon's orbit 5��15.  So at the solstices the four extreme values of the
full moon's declination were

±(23��91+5��15), i.e. ±29��06
and                  ±(23��91–5��15), i.e. ±18��76.

To compare an observed azimuthal line with one or other of these values the direct
method would be to correct the altitude of the horizon for refraction and parallax before
it was used to compute the declination. For our present purpose it is, however, easier and
sufficiently accurate to reverse the process and to compute the effects of parallax on the
declinations. These effects can then be applied to the four above values. The declinations

eso found might be called the expected declinations (� ) and are ready to be compared
directly with those given in Table 8.1, which were of course found without any correction
for parallax.

Let �h be the moon's horizontal parallax. Since the altitudes are all small the effect of
this on a computed declination is

�� = �h x d�/dh.

�h is about 0�.95 and in these latitudes d�/dh has a value of about 0�94 when � is 29�
and about 0�87 when � is 19�.  So we obtain the following expected declinations:

at the winter solstice
e�  = 29��06 – 0��95 x 0�94, i.e. +28��17,
eand �  = 18��76 – 0��95 x 0�87, i.e. +17��94;

at the summer solstice
e�  = –29��06 – 0��95 x 0�94, i.e. –29��95,
eand �  = –18��76 – 0��95 x 0�87, i.e. –19��58.
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These are the four declinations which are marked on the main histogram (Fig. 8.1) by
four shaded circles. It will be seen that they all carry groups of observed lines, the
concentration at – 30� being particularly large. Two of these declinations also come into
the range covered by the histogram of the calendar lines (Fig. 9.2), where it will be seen 

how the gaussians tend to pile over the upper or lower limbs. To look into this question
of the limbs it was decided to combine all four cases. This can be done conveniently by
finding by how much every observed declination differs from the expected and then
plotting these as a histogram.

In Table 10.1 will be found all declinations which lie within 1� of the expected values.
In Fig. 9.2 it will be seen that one of these expected lunar lines comes near one of the
expected solar lines, necessitating here a limit of 0��8. Otherwise nothing has been
excluded and the declinations are just as they were computed from the field material. 
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eThe deviations from the expected values are tabulated as �  = � – � . A histogram of these
values will be found in Fig. 10.1. The remarkable way in which the gaussians form a peak
for each limb of the moon will be noticed. The Class A lines are shown shaded and it will
be seen that they alone produce the double peak, rather more lines going to the lower
limb. There are six lines in the table (marked P ) which are considered to give the
declination with a precision better than ±0��1.  The gaussians for these lines are shown
hatched in both directions, bringing out clearly how closely these reliable lines cluster
about one limb or the other.

There are several obvious ways in which we can make a very rough estimate of the
probability that these declinations would accidentally group themselves as they do if they
were entirely random. The probability level comes out so very low on any reasonable way
of estimating that it can be accepted as certain that these lines were set out intentionally
to mark these declinations. As no other explanation can be found for the declinations
involved we must accept that they have a lunar significance.

As explained in Chapter 3 there is a periodic term of amplitude 9' or 0��15 super-
imposed on the moon's declination and the question arises as to whether the marks were
set up for the mean maximum declination or for the absolute maximum. Many of the
lines discussed in this chapter are incapable of discriminating, but there are a number of
sites where not only can the difference be seen but it can be measured on the mountain
tops. Unfortunately, not all of these lines contain unequivocal indicators pointing to the
exact spot or spots. Accordingly, to be logical it is necessary to establish that lunar lines
were used before going on to consider the evidence showing that Megalithic man actually
observed and recorded the 9' oscillation. That has been the object of this chapter.

At the four or five sites where there is a possibility of a precision of ±1' it will appear
that it was not the mean maximum which was indicated, but that the top and bottom of
the little wave shown in Fig. 3.5 (c) were both exactly recorded. But these sites need to
be dealt with individually and they will be taken in their own place in the description of
sites in Chapters 11 and 12.

In the meantime it may be said that Megalithic man's interest in the 9' oscillation
probably arose from the fact that eclipses can happen only when the Moon's declination
is near the top of one of these waves.

***

Chapter 10: Indications of Lunar Declinations, A. Thom, Megalithic Sites in Britain,
Clarendon Press, Oxford, 1971:118–121.
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