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FOURTH  DAY
ALVIATI.  Once more, Simplicio is here on time; so let us
without delay take up the question of motion. The text of
our Author follows:

THE MOTION OF PROJECTILES

In the preceding pages we have discussed the properties of
uniform motion and of motion naturally accelerated along
planes of all inclinations. I now propose to set forth those
properties which belong to a body whose motion is
compounded of two other motions, namely, one uniform

and one naturally accelerated; these properties, well worth knowing, I propose to
demonstrate in a rigid manner. This is the kind of motion seen in a moving projectile;
its origin I conceive to be as follows:

Imagine any particle projected along a horizontal plane without friction; then we
know, from what has been more fully explained in the preceding pages, that this
particle will move along this same plane with a motion which is uniform and
perpetual, provided the plane has no limits. But if the plane is limited and elevated,
then the moving particle, which we imagine to be a heavy one, will on passing over
the edge of the plane acquire, in addition to its previous uniform and perpetual
motion, a downward propensity due to its own weight; so that the resulting motion
which I call projection [projectio] is compounded of one which is uniform and
horizontal and of another which is vertical and naturally accelerated.

 
We now proceed to {245} demonstrate some of its properties, the first of which is as
follows:

[269]
THEOREM I, PROPOSITION I

A projectile which is carried by a uniform horizontal motion compounded with a
naturally accelerated vertical motion describes a path which is a semi-parabola.
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SAGR. Here, Salviati, it will be necessary to stop a little while for my sake and, I
believe, also for the benefit of Simplicio; for it so happens that I have not gone very far
in my study of Apollonius and am merely aware of the fact that he treats of the parabola
and other conic sections, without an understanding of which I hardly think one will be
able to follow the proof of other propositions depending upon them. Since even in this
first beautiful theorem the author finds it necessary to prove that the path of a projectile
is a parabola, and since, as I imagine, we shall have to deal with only this kind of curves,
it will be absolutely necessary to have a thorough acquaintance, if not with all the
properties which Apollonius has demonstrated for these figures, at least with those which
are needed for the present treatment.

SAGR. You are quite too modest, pretending ignorance of facts which not long ago you
acknowledged as well known—I mean at the time when we were discussing the strength
of materials and needed to use a certain theorem of Apollonius which gave you no
trouble.

SAGR. I may have chanced to know it or may possibly have assumed it, so long as
needed, for that discussion; but now when we have to follow all these demonstrations
about such curves we ought not, as they say, to swallow it whole, and thus waste time and
energy.

SIMP. Now even though Sagredo is, as I believe, well equipped for all his needs, I do
not understand even the elementary terms; for although our philosophers have treated
the motion of projectiles, I do not recall their having described the path of a projectile
except to state in a general way that it is always a {246} curved line, unless the projection
be vertically upwards. But [270] if the little Euclid which I have learned since our
previous discussion does not enable me to understand the demonstrations which are to
follow, then I shall be obliged to accept the theorems on faith without fully
comprehending them.

SALV. On the contrary, I desire that you should understand them from the Author
himself, who, when he allowed me to see this work of his,
was good enough to prove for me two of the principal
properties of the parabola because I did not happen to have
at hand the books of Apollonius. These properties, which are
the only ones we shall need in the present discussion, he
proved in such a way that no prerequisite knowledge was
required. These theorems are, indeed, given by Apollonius,
but after many preceding ones, to follow which would take
a long while. I wish to shorten our task by deriving the first
property purely and simply from the mode of generation of
the parabola and proving the second immediately from the
first.

Beginning now with the first, imagine a right cone, erected
upon the circular base ibkc with apex at l.  The section of this
cone made by a plane drawn parallel to the side lk is the curve 
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which is called a parabola. The base of this parabola bc cuts at right angles the diameter
ik of the circle ibkc, and the axis ad is parallel to the side lk; now having taken any point
f in the curve bfa draw the straight line fe parallel to bd; then, I say, the square of bd is to
the square of fe in the same ratio as the axis ad is to the portion ae. Through the point e
pass a plane parallel to the circle ibkc, producing in the cone a circular section whose
diameter is the line geh. Since bd is at right angles to ik in the circle ibk, the square of bd
is equal to the rectangle formed by id and dk; so also in the upper circle which passes
through the points gfh the square of fe is equal to the rectangle formed by {247} ge and
eh; hence the square of bd is to the square of fe as the rectangle id.dk is to the rectangle
ge.eh. And since the line ed is parallel to hk, the line eh, being parallel to dk, is equal to it;
therefore the rectangle id.dk is to the rectangle ge.eh as id is to [271]  ge, that is, as da is
to ae; whence also the rectangle id.dk is to the rectangle ge.eh, that is, the square of bd is
to the square of fe, as the axis da is to the portion ae.        Q.  E.  D. 

The other proposition necessary for this discussion we demonstrate as follows. Let us
draw a parabola whose axis ca is prolonged upwards to a point d; from any point b draw
the line bc parallel to the base of the parabola; if now the
point d is chosen so that da = ca, then, I say, the straight
line drawn through the points b and d will be tangent to
the parabola at b. For imagine, if possible, that this line
cuts the parabola above or that its prolongation cuts it
below, and through any point g in it draw the straight
line fge. And since the square of fe is greater than the
square of ge, the square of fe will bear a greater ratio to
the square of bc than the square of ge to that of bc; and
since, by the preceding proposition, the square of fe is to
that of bc as the line ea is to ca, it follows that the line ea
will bear to the line ca a greater ratio than the square of
ge to that of bc, or, than the square of ed to that of cd
(the sides of the triangles deg and dcb being
proportional). But the line ea is to ca, or da, in the same
ratio as four times the rectangle ea.ad is to four times the
square of ad, or, what is the same, the square of cd, since
this is four times the square of ad; hence four times the
rectangle ea.ad bears to the square of cd {248} a greater
ratio than the square of ed to the square of cd; but that
would make four times the rectangle ea.ad greater than the square of ed; which is false,
the fact being just the opposite, because the two portions ea and ad of the line ed are not
equal. Therefore the line db touches the parabola without cutting it.    Q.  E.  D.

SIMP. Your demonstration proceeds too rapidly and, it seems to me, you keep on
assuming that all of Euclid's theorems are [272] as familiar and available to me as his first
axioms, which is far from true. And now this fact which you spring upon us, that four 
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times the rectangle ea.ad is less than the square of de because the two portions ea and ad
of the line de are not equal brings me little composure of mind, but rather leaves me in
suspense.

SALV. Indeed, all real mathematicians
assume on the part of the reader perfect
familiarity with at least the elements of
Euclid; and here it is necessary in your case
only to recall a proposition of the Second
Book in which he proves that when a line
is cut into parts is less than that formed on
the equal (i.e., less than the square on half
the line), by an amount which is the square
of the difference between the equal and
unequal segments. From this it is clear that
the square of the whole line which is equal
to four times the square of the half is greater than four times the rectangle of the unequal
parts. In order to understand the following portions of this treatise it will be necessary to
keep in mind the two elemental theorems from conic sections which we have just
demonstrated; and these two theorems are indeed the only ones which the Author uses.
We can now resume the text and see how he demonstrates his first proposition in which
he shows that a body falling with a motion compounded of a uniform horizontal and a
naturally accelerated [naturale descendente] one describes a semi-parabola.

Let us imagine an elevated horizontal line or plane ab along which a body moves with
uniform speed from a to b. Suppose {249} this plane to end abruptly at b; then at this
point the body will, on account of its weight, acquire also a natural motion downwards
along the perpendicular bn. Draw the line be along the plane ba to represent the flow, or
measure, of time; divide this line into a number of segments, bc, cd, de, representing equal
intervals of time; from the points b, c, d, e, let fall lines which are parallel to the
perpendicular bn. On the first of these lay off any distance ci, on the second a distance
four times as long, df; on [273] the third, one nine times as long, eh; and so on, in
proportion to the squares of cb, db, eb, or, we may say, in the squared ratio of these same
lines. Accordingly we see that while the body moves from b to c with uniform speed, it
also falls perpendicularly through the distance ci, and at the end of the time-interval bc
finds itself at the point l. In like manner at the end of the time-interval bd, which is the
double of bc, the vertical fall will be four times the first distance ci; for it has been shown
in a previous discussion that the distance traversed by a freely falling body varies as the
square of the time; in like manner the space eh traversed during the time be will be nine
times ci; thus it is evident that the distances eh, df, cl will be to one another as the squares
of the lines be, bd, bc. Now from the points l, f, h draw the straight lines io, fg, hl parallel
to be; these lines hl, fg, io are equal to eb, db and cb, respectively; so also are the lines bo,
bg, bl respectively equal to ci, df, and eh. The square of hl is to that of fg as the line lb is
to bg; 
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and the square of fg is to that of io as gb is to bo; therefore the points l, f, h, lie on one and
the same parabola. In like manner it may be shown that, if we take equal time-intervals
of any size whatever, and if we imagine the particle to be carried by a similar compound
motion, {250} the positions of this particle, at the ends of these time-intervals, will lie on
one and the same parabola.   Q.  E.  D. 

SALV. This conclusion follows from the converse of the first of the two propositions
given above. For, having drawn a parabola through the points b and h, any other two
points, f and l, not falling on the parabola must lie either within or without; consequently
the line fg is either longer or shorter than the line which terminates on the parabola.
Therefore the square of hl will not bear to the square of fg the same ratio as the line lb to
bg, but a greater or smaller; the fact is, however, that the square of hl does bear this same
ratio to the square of fg. Hence the point f does lie on the parabola, and so do all the
others.

SAGR. One cannot deny that the argument is new, subtle and conclusive, resting as it
does upon this hypothesis, namely, that the horizontal motion remains uniform, that the
vertical motion continues to be accelerated downwards in proportion to the square of the
time, and that such motions and velocities as these combine without altering, disturbing,
or hindering each other,* so that as the motion proceeds the path of the projectile does
not change into a different curve: but this, in my opinion, [274] is impossible. For the
axis of the parabola along which we imagine the natural motion of a falling body to take
place stands perpendicular to a horizontal surface and ends at the center of the earth; and
since the parabola deviates more and more from its axis no projectile can ever reach the
center of the earth or, if it does, as seems necessary, then the path of the projectile must
transform itself into some other curve very different from the parabola.

SIMP. To these difficulties, I may add others. One of these is that we suppose the
horizontal plane, which slopes neither up nor down, to be represented by a straight line
as if each point on this line were equally distant from the center, which is not the case;
for as one starts from the middle [of the line] and goes toward either end, he departs
farther and farther from the center [of the earth] and is therefore constantly going uphill. 
Whence it follows that the motion cannot remain uniform {251} through any distance
whatever, but must continually diminish. Besides, I do not see how it is possible to avoid
the resistance of the medium which must destroy the uniformity of the horizontal motion
and change the law of acceleration of falling bodies. These various difficulties render it
highly improbable that a result derived from such unreliable hypotheses should hold true
in practice.

SALV.  All these difficulties and objections which you urge are so well founded that it
is impossible to remove them; and, as for me, I am ready to admit them all, which indeed
I think our author would also do. I grant that these conclusions proved in the abstract
will be different when applied in the concrete and will be fallacious to this extent, that
neither will the horizontal motion be uniform nor the natural acceleration be in the ratio
assumed, nor the path of the projectile a parabola, etc. But, on the other hand, I ask you 

* A very near approach to Newton’s Second Law of Motion.  [Trans.]
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not to begrudge our Author that which other eminent men have assumed even if not
strictly true. The authority of Archimedes alone will satisfy everybody. In his Mechanics
and in his first quadrature of the parabola he takes for granted that the beam of a balance 
or steelyard is a straight line, every point of which is equidistant from the common center
of all heavy bodies, and that the cords by which heavy bodies are suspended are parallel
to each other.

Some consider this assumption permissible because, in practice, our instruments and
the distances involved are so small in comparison with the enormous distance from the
center of the earth that we may consider a minute of arc on a great circle as a straight line,
and may regard the perpendiculars let fall from its two extremities as parallel. For if in
actual practice one had to [275] consider such small quantities, it would be necessary first
of all to criticise the architects who presume, by use of a plumbline, to erect high towers
with parallel sides. I may add that, in all their discussions, Archimedes and the others
considered themselves as located at an infinite distance from the center of the earth, in
which case their assumptions were not false, and therefore their conclusions were
absolutely correct. When we {252} wish to apply our proven conclusions to distances
which, though finite, are very large, it is necessary for us to infer, on the basis of
demonstrated truth, what correction is to be made for the fact that our distance from the
center of the earth is not really infinite, but merely very great in comparison with the
small dimensions of our apparatus. The largest of these will be the range of our
projectiles—and even here we need consider only the artillery—which, however great,
will never exceed four of those miles of which as many thousand separate us from the
center of the earth; and since these paths terminate upon the surface of the earth only
very slight changes can take place in their parabolic figure which, it is conceded, would
be greatly altered if they terminated at the center of the earth.

As to the perturbation arising from the resistance of the medium this is more
considerable and does not, on account of its manifold forms, submit to fixed laws and
exact description. Thus if we consider only the resistance which the air offers to the
motions studied by us, we shall see that it disturbs them all and disturbs them in an
infinite variety of ways corresponding to the infinite variety in the form, weight, and
velocity of the projectiles. For as to velocity, the greater this is, the greater will be the
resistance offered by the air; a resistance which will be greater as the moving bodies
become less dense [men gravi]. So that although the falling body ought to be displaced
[andare accelerandosi] in proportion to the square of the duration of its motion, yet no
matter how heavy the body, if it falls from a very considerable height, the resistance of
the air will be such as to prevent any increase in speed and will render the motion [276]
uniform; and in proportion as the moving body is less dense [men grave] this uniformity
will be so much the more quickly attained and after a shorter fall. Even horizontal motion
which, if no impediment were offered, would be uniform and constant is altered by the
resistance of the air and finally ceases; and here again the less dense [piu leggiero] the body
the quicker the process. Of these properties [accidenti] of weight, of velocity, and also of
form [figura], infinite in number, it is not possible to give {253} any exact description; 
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hence, in order to handle this matter in a scientific way, it is necessary to cut loose from
these difficulties; and having discovered and demonstrated the theorems, in the case of
no resistance, to use them and apply them with such limitations as experience will teach.
And the advantage of this method will not be small; for the material and shape of the
projectile may be chosen, as dense and round as possible, so that it will encounter the
least resistance in the medium. Nor will the spaces and velocities in general be so great
but that we shall be easily able to correct them with precision.

In the case of those projectiles which we use, made of dense [grave] material and round
in shape, or of lighter material and cylindrical in shape, such as arrows, thrown from a
sling or crossbow, the deviation from an exact parabolic path is quite insensible. Indeed,
it you will allow me a little greater liberty, I can show you, by two experiments, that the
dimensions of our apparatus are so small that these external and incidental resistances,
among which that of the medium is the most considerable, are scarcely observable.

I now proceed to the consideration of motions through the air, since it is with these
that we are now especially concerned; the resistance of the air exhibits itself in two ways:
first by offering greater impedance to less dense than to very dense bodies, and secondly
by offering greater resistance to a body in rapid motion than to the same body in slow
motion.

Regarding the first of these, consider the case of two balls having the same dimensions,
but one weighing ten or twelve times as much as the other; one, say, of lead, the other of
oak, both allowed to fall from an elevation of 150 or 200 cubits.

Experiment shows that they will reach the earth with slight difference in speed,
showing us that in both cases the retardation caused by the air is small; for if both balls
start at the same moment and at the same elevation, and if the leaden one be slightly
retarded and the wooden one greatly retarded, then the former ought to reach the earth
a considerable distance in advance of the latter, since it is ten times as heavy. But this
{254} [277] does not happen; indeed, the gain in distance of one over the other does not
amount to the hundredth part of the entire fall. And in the case of a ball of stone
weighing only a third or half as much as one of lead, the difference in their times of
reaching the earth will be scarcely noticeable. Now since the speed [impeto] acquired by
a leaden ball in falling from a height of 200 cubits is so great that if the motion remained
uniform the ball would, in an interval of time equal to that of the fall, traverse 400 cubits,
and since this speed is so considerable in comparison with those which, by use of bows
or other machines except fire arms, we are able to give to our projectiles, it follows that
we may, without sensible error, regard as absolutely true those propositions which we are
about to prove without considering the resistance of the medium.

Passing now to the second case, where we have to show that the resistance of the air
for a rapidly moving body is not very much greater than for one moving slowly, ample
proof is given by the following experiment. Attach to two threads of equal length—say
four or five yards—two equal leaden balls and suspend them from the ceiling; now pull
them aside from the perpendicular, the one through 80 or more degrees, the other
through not more than four or five degrees; so that, when set free, the one falls, passes
through the perpendicular, and describes large but slowly decreasing arcs of 160, 150, 
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140 degrees, etc.; the other swinging through small and also diminishing arcs of 10, 8,
6, degrees, etc.

In the first place it must be remarked that one pendulum passes through its arcs of
180°, 160°, etc., in the same time that the other swings through its 10°, 8°, etc., from
which it follows that the speed of the first ball is 16 and 18 times greater than that of the 
second. Accordingly, if the air offers more resistance to the high speed than to the low,
the frequency of vibration in the large arcs of 180° or 160°, etc., ought to be less than in
the small arcs of 10°, 8°, 4°, etc., and even less than in arcs of 2°, or 1°; but this pre-
diction is not verified by experiment; because if two persons start to count the vibrations,
the one the large, the other the small, they will discover that after counting tens {255} and
even hundreds they will not differ by a single vibration, not even by a fraction of
one.[278] 

This observation justifies the two following propositions, namely, that vibrations of
very large and very small amplitude all occupy the same time and that the resistance of
the air does not affect motions of high speed more than those of low speed, contrary to
the opinion hitherto generally entertained.

SAGR. On the contrary, since we cannot deny that the air hinders both of these
motions, both becoming slower and finally vanishing, we have to admit that the
retardation occurs in the same proportion in each case. But how? How, indeed, could the
resistance offered to the one body be greater than that offered to the other except by the
impartation of more momentum and speed [impeto e velocità] to the fast body than to the
slow? And if this is so the speed with which a body moves is at once the cause and
measure [cagione e misura] of the resistance which it meets. Therefore, all motions, fast
or slow, are hindered and diminished in the same proportion; a result, it seems to me, of
no small importance.

SALV. We are able, therefore, in this second case to say that the errors, neglecting those
which are accidental, in the results which we are about to demonstrate are small in the
case of our machines where the velocities employed are mostly very great and the
distances negligible in comparison with the semidiameter of the earth or one of its great
circles.

SIMP. I would like to hear your reason for putting the projectiles of fire arms, i.e.,
those using powder, in a different class from the projectiles employed in bows, slings, and
crossbows, on the ground of their not being equally subject to change and resistance from
the air.

SALV. I am led to this view by the excessive and, so to speak, supernatural violence
with which such projectiles are launched; for, indeed, it appears to me that without
exaggeration one might say that the speed of a ball fired either from a musket or from a
piece of ordnance is supernatural. For if such a ball be allowed to fall from some great
elevation its speed will, owing to the {256} resistance of the air, not go on increasing
indefinitely; that which happens to bodies of small density in falling through short
distances—I mean the reduction of their motion to uniformity—will also happen to a
ball of iron or lead after it has fallen a few thousand cubits; this terminal or final speed 



GALILEO: TWO NEW SCIENCES, FOURTH DAY (TRANS. CREW & DE SALVIO, 1954: 256–257) 

[terminata velocità] is the maximum which such a heavy body can naturally acquire [279]
in falling through the air. This speed I estimate to be much smaller than that impressed
upon the ball by the burning powder.

An appropriate experiment will serve to demonstrate this fact. From a height of one
hundred or more cubits fire a gun [archibuso] loaded with a lead bullet, vertically down- 
wards upon a stone pavement; with the same gun shoot against a similar stone from a
distance of one or two cubits, and observe which of the two balls is the more flattened.
Now if the ball which has come from the greater elevation is found to be the less flattened
of the two, this will show that the air has hindered and diminished the speed initially
imparted to the bullet by the powder, and that the air will not permit a bullet to acquire
so great a speed, no matter from what height it falls; for if the speed impressed upon the
ball by the fire does not exceed that acquired by it in falling freely [naturalmente] then its
downward blow ought to be greater rather than less.

This experiment I have not performed, but I am of the opinion that a musket-ball or
cannon-shot, falling from a height as great as you please, will not deliver so strong a blow
as it would if fired into a wall only a few cubits distant, i.e., at such a short range that the
splitting or rending of the air will not be sufficient to rob the shot of that excess of
supernatural violence given it by the powder.

The enormous momentum [impeto] of these violent shots may cause some deformation
of the trajectory, making the beginning of the parabola flatter and less curved than the
end; but, so far as our Author is concerned, this is a matter of small consequence in
practical operations, the main one of which is the preparation of a table of ranges for
shots of high elevation, giving the distance {257} attained by the ball as a function of the
angle of elevation; and since shots of this kind are fired from mortars [mortari] using
small charges and imparting no supernatural momentum [impeto sopranaturale] they
follow their prescribed paths very exactly.

But now let us proceed with the discussion in which the Author invites us to the study
and investigation of the motion of a body [impeto del mobile] when that motion is
compounded of two others; and first the case in which the two are uniform, the one
horizontal, the other vertical.]

[280]
THEOREM II, PROPOSITION II

When the motion of a body is the resultant of two uniform motions, one
horizontal, the other perpendicular, the square of the resultant momentum is equal
to the sum of the squares of the two component momenta.*

Let us imagine any body urged by two uniform motions and let ab represent the
vertical displacement, while bc represents the displacement which, in the same interval
of time, takes place in a horizontal direction. If then the distances ab and bc are traversed,
* In the original this theorem reads as follows

  “Si aliquod mobile duplici motu aquabili moveatur, nempe orizontali et perpendicularis, impetus seu momentum lationis ex
utroque motu composita erit potentia aquakis ambobus momentis priorum motuum.”
    For the justification of this translation of the word “potentia” and of the use of the adjective “resultant” see  p. 288 below.
[Trans.]
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during the same time-interval, with uniform motions the corresponding momenta will
be to each other as the distances ab and bc are to each other; but the body which is urged
by these two motions describes the diagonal ac; its momentum is proportional to ac.  Also
the square of ac is equal to the sum of the squares of ab and bc. Hence the square of the
resultant momentum is equal to the sum of the squares of the two momenta ab and bc. 
    Q.  E.  D. 

SIMP. At this point there is just one slight difficulty which needs to be cleared up; for
it seems to me that the conclusion {258} just reached contradicts a previous proposition*
in which it is claimed that the speed [impeto] of a body coming from a to b is equal to
that in coming from a to c; while now you conclude that the speed [impeto] at c is greater
than that at b.
  SALV. Both propositions, Simplicio, are true, yet there is a great difference between
them. Here we are speaking of a body urged by a single motion which is the resultant of
two uniform motions, while there we were speaking of two bodies each urged with
naturally accelerated motions, one along the vertical ab the other along the inclined plane
ac. Besides the time-intervals were there not supposed to be equal, that along the incline
ac being greater than that along the vertical ab; but the motions of which we now speak,
those along ab, bc, ac, are uniform and simultaneous.

SIMP. Pardon me; I am satisfied; pray go on. 
[281] 

SALV. Our Author next undertakes to explain what happens when a body is urged by
a motion compounded of one which is horizontal and uniform and of another which is
vertical but naturally accelerated; from these two components results the path of a
projectile, which is a parabola. The problem is to determine the speed [impeto] of the
projectile at each point. With this purpose in view our Author sets forth as follows the
manner, or rather the method, of measuring such speed [impeto] along the path which
is taken by a heavy body starting from rest and falling with a naturally accelerated
motion.

THEOREM III, PROPOSITION III
Let the motion take place along the line ab, starting from rest at a, and in this line

choose any point c. Let ac represent the time, or the measure of the time, required for the
body to fall through the space ac; let ac also represent the velocity [impetus seu
momentum] at c acquired by a fall through the distance
ac. In the line ab select any other point b. The problem
now is to determine the velocity at b acquired by a body
in falling through the distance ab and to express this in
terms of the velocity at c, the measure of which is the
length ac. Take as a mean proportional between ac and
ab. {259} We shall prove that the velocity at b is to that
at c as the length as is to the length ac. Draw the
horizontal line cd, having twice the length of ac, and be, 
   * See p. 169 above.   [Trans.]  
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having twice the length of ba. It then follows, from the preceding theorems, that a body
falling through the distance ac, and turned so as to move along the horizontal cd with a
uniform speed equal to that acquired on reaching c [282] will traverse the distance cd in
the same interval of time as that required to fall with accelerated motion from a to c.
Likewise be will be traversed in the same time as ba. But the time of descent through ab
is as; hence the horizontal distance be is also traversed in the time as. Take a point l such
that the time as is to the time ac as be is to bl; since the motion along be is uniform, the
distance bl, if traversed with the speed [momentum celeritatis] acquired at b, will occupy
the time ac; but in this same time-interval, ac, the distance cd is traversed with the speed
acquired in c. Now two speeds are to each other as the distances traversed in equal intervals
of time. Hence the speed at c is to the speed at b as cd is to bl. But since dc is to be as their
halves, namely, as ca is to ba, and since be is to bl as ba is to sa; it follows that dc is to bl as
ca is to sa. In other words, the speed at c is to that at b as ca is to sa, that is, as the time of fall
through ab.

The method of measuring the speed of a body along the direction of its fall is thus
clear; the speed is assumed to increase directly as the time.

But before we proceed further, since this discussion is to deal with the motion
compounded of a uniform horizontal one and one accelerated vertically downwards—the
path of a projectile, namely, a parabola—it is necessary that we define some common
standard by which we may estimate the velocity, or momentum [velocitatem, impetum seu
momentum] of both motions; {260} and since from the innumerable uniform velocities
one only, and that not selected at random, is to be compounded with a velocity acquired
by naturally accelerated motion, I can think of no simpler way of selecting and measuring
this than to assume another of the same kind.* For the sake of clearness, draw the vertical
line ac to meet the horizontal line bc. Ac is the height and bc the amplitude of the

semi-parabola ab, which is the resultant of the two motions, one
that of a body falling [283] from rest at a, through the distance ac,
with naturally accelerated motion, the other a uniform motion
along the horizontal ad. The speed acquired at c by a fall through
the  distance ac is determined by the height ac; for the speed of a
body falling from the same elevation is always one and the same;
but along the horizontal one may give a body an infinite number
of uniform speeds. However, in order that I may select one out of
this multitude and separate it from the rest in a perfectly definite
manner, I will extend the height ca upwards to e just as far as is
necessary and will call this distance ae the "sublimity." Imagine a
body to fall from rest at e; it is clear that we may make its terminal
speed at a the same as that with which the same body travels along
the horizontal line ad; this speed will be such that, in the time of
descent along ea, it will describe a horizontal distance twice the

length of ea. This preliminary remark seems necessary.
  

 * Galileo here proposes to employ as a standard of velocity the terminal speed of a body falling freely from a given height.
[Trans.]



GALILEO: TWO NEW SCIENCES, FOURTH DAY (TRANS. CREW & DE SALVIO, 1954: 260–262) 

The reader is reminded that above I have called the horizontal line cb the "amplitude"
of the semi-parabola ab; the axis ac of this parabola, I have called its "altitude"; but the
line ea the fall along which determines the horizontal speed I have called the "sublimity."
These matters having been explained, I proceed with the demonstration.{261}

SAGR. Allow me, please, to interrupt in order that I may point out the beautiful
agreement between this thought of the Author and the views of Plato concerning the 
origin of the various uniform speeds with which the heavenly bodies revolve. The latter
chanced upon the idea that a body could not pass from rest to any given speed and
maintain it uniformly except by passing through all the degrees of speed intermediate
between the given speed and rest. Plato thought that God, after having created the
heavenly bodies, assigned them the proper and uniform speeds with which they were
forever to revolve; and that He made them start from rest and move over definite
distances under a natural and rectilinear acceleration such as governs the motion of
terrestrial bodies. He added that once these bodies had gained their proper and
permanent speed, their rectilinear motion was converted into a circular one, the only
[284] motion capable of maintaining uniformity, a motion in which the body revolves
without either receding from or approaching its desired goal. This conception is truly
worthy of Plato; and it is to be all the more highly prized since its underlying principles
remained hidden until discovered by our Author who removed from them the mask and
poetical dress and set forth the idea in correct historical perspective. In view of the fact
that astronomical science furnishes us such complete information concerning the size of
the planetary orbits, the distances of these bodies from their centers of revolution, and
their velocities, I cannot help thinking that our Author (to whom this idea of Plato was
not unknown) had some curiosity to discover whether or not a definite "sublimity" might
be assigned to each planet, such that, if it were to start from rest at this particular height
and to fall with naturally accelerated motion along a straight line, and were later to
change the speed thus acquired into uniform motion, the size of its orbit and its period
of revolution would be those actually observed.

SALV. I think I remember his having told me that he once made the computation and
found a satisfactory correspondence with observation. But he did not wish to speak of it,
lest in {262} view of the odium which his many new discoveries had already brought
upon him, this might be adding fuel to the fire. But if any one desires such information
he can obtain it for himself from the theory set forth in the present treatment.

We now proceed with the matter in hand, which is to prove:

PROBLEM I, PROPOSITION IV
To determine the momentum of a projectile at each particular point in its given
parabolic path.

Let bec be the semi-parabola whose amplitude is cd and whose height is db, which
latter extended upwards cuts the tangent of the parabola ca in a. Through the vertex draw
the horizontal line bi parallel to cd. Now if the amplitude cd is equal to the entire height 
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da, then bi will be equal to ba and also to bd; and if we take ab as the measure of the time
required for fall through the distance ab and also of the momentum acquired at b in
consequence of its fall from rest at a, then if we turn into a horizontal direction the
momentum acquired by fall through ab [impetum ab] the space traversed in the same
interval of time will be represented by dc which is twice bi. But a body which falls from
rest at b along the line bd will during the same time-interval fall through the height of the
parabola [285] bd. Hence a body falling from rest at a, turned into a horizontal direction
with the speed ab will traverse a space equal to dc. Now if one superposes upon this
motion a fall along bd, traversing the height bd while the parabola bc is described, then
the momentum of the body at the terminal point c is the resultant of a uniform
horizontal momentum, whose value is represented by ab, and of another momentum
acquired by fall from b to the terminal point d or c; these two momenta are equal. If,
therefore, we take ab to be the measure of one of these momenta, say, the uniform
horizontal one, then bi, which is equal to bd, will represent the momentum acquired at
d or c; and ia will represent the resultant of these two momenta, that is, the total
momentum with which the projectile, travelling along the parabola, strikes at c. {263}

With this in mind let us take any point on the parabola, say e, and determine the
momentum with which the projectile passes that point.
Draw the horizontal ef and take bg a mean proportional
between bd and bf. Now since ab, or bd, is assumed to
be the measure of the time and of the momentum
[momentum velocitatis] acquired by falling from rest at
b through the distance bd, it follows that bg will
measure the time and also the momentum [impetus]
acquired at f by fall from b. If therefore we lay off bo,
equal to bg, the diagonal line joining a and o will
represent the momentum at the point e; because the
length ab has been assumed to represent the
momentum at b which, after diversion into a horizontal
direction, remains constant; and because bo measures
the momentum at f or e, acquired by fall, from rest at
b, through the height bf. But the square of ao equals the sum of the squares of ab and bo.
Hence the theorem sought.

SAGR. The manner in which you compound these different momenta to obtain their
resultant strikes me as so novel that my mind is left in no small confusion. I do not refer
to the composition of two uniform motions, even when unequal, and when one takes
place along a horizontal, the other along a vertical direction; because in this case I am
thoroughly convinced that the resultant is a motion whose square is equal to the sum of
the squares of the two components. The confusion arises when one undertakes to
compound a uniform horizontal motion with a vertical one which is naturally
accelerated. I trust, therefore, we may pursue this discussion more at length.[286] 

SIMP. And I need this even more than you since I am not yet as clear in my mind as
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 I ought to be concerning those fundamental propositions upon which the others rest.
Even in the {264} case of the two uniform motions, one horizontal, the other
perpendicular, I wish to understand better the manner in which you obtain the resultant
from the components. Now, Salviati, you understand what we need and what we desire.

SALV. Your request is altogether reasonable and I will see whether my long
consideration of these matters will enable me to make them clear to you. But you must
excuse me if in the explanation I repeat many things already said by the Author.
Concerning motions and their velocities or momenta [movimenti e lor velocità o impeti]
whether uniform or naturally accelerated, one cannot speak definitely until he has
established a measure for such velocities and also for time. As for time we have the already
widely adopted hours, first minutes and second minutes. So for velocities, just as for
intervals of time, there is need of a common standard which shall be understood and
accepted by everyone, and which shall be the same for all. As has already been stated, the
Author considers the velocity of a freely falling body adapted to this purpose, since this
velocity increases according to the same law in all parts of the world; thus for instance the
speed acquired by a leaden ball of a pound weight starting from rest and falling vertically
through the height of, say, a spear's length is the same in all places; it is therefore
excellently adapted for representing the momentum [impeto] acquired in the case of
natural fall.

It still remains for us to discover a method of measuring momentum in the case of
uniform motion in such a way that all who discuss the subject will form the same
conception of its size and velocity [grandezza e velocità]. This will prevent one person
from imagining it larger, another smaller, than it really is; so that in the composition of
a given uniform motion with one which is accelerated different men may not obtain
different values for the resultant. In order to determine and represent such a momentum
and particular speed [impeto e velocità particolare] our Author has found no better method
than to use the momentum acquired by a body in naturally accelerated motion.

[287] 
The speed of a body which has in this manner acquired any {265} momentum

whatever will, when converted into uniform motion, retain precisely such a speed as,
during a time-interval equal to that of the fall, will carry the body through a distance
equal to twice that of the fall. But since this matter is one which is fundamental in our
discussion it is well that we make it perfectly clear by means of some particular example.

Let us consider the speed and momentum acquired by a body falling through the
height, say, of a spear [picca] as a standard which we may use in the measurement of other
speeds and momenta as occasion demands; assume for instance that the time of such a
fall is four seconds [minuti secondi d'ora]; now in order to measure the speed acquired
from a fall through any other height, whether greater or less, one must not conclude that
these speeds bear to one another the same ratio as the heights of fall; for instance, it is not
true that a fall through four times a given height confers a speed four times as great as
that acquired by descent through the given height; because the speed of a naturally
accelerated motion does not vary in proportion to the time. As has been shown above,
the ratio of the spaces is equal to the square of the ratio of the times.
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If, then, as is often done for the sake of brevity, we take the same limited
straight line as the measure of the speed, and of the time, and also of the space
traversed during that time, it follows that the duration of fall and the speed
acquired by the same body in passing over any other distance, is not represented
by this second distance, but by a mean proportional between the two distances.
This I can better illustrate by an example. In the vertical line ac, lay off the
portion ab to represent the distance traversed by a body falling freely with
accelerated motion: the time of fall may be represented by any limited straight
line, but for the sake of brevity, we shall represent it by the same length ab; this
length may also be employed as a measure of the momentum and speed acquired
during the motion; in short, let ab be a measure of the various physical quantities
which enter this discussion.

Having agreed arbitrarily upon ab as a measure of these {266} three different
quantities, namely, space, time, and momentum, our next task is to find the time
required for fall through a [288] given vertical distance ac, also the momentum acquired
at the terminal point c, both of which are to be expressed in terms of the time and
momentum represented by ab. These two required quantities are obtained by laying off
ad, a mean proportional between ab and ac; in other words, the time of fall from a to c
is represented by ad on the same scale on which we agreed that the time of fall from a to
b should be represented by ab. In like manner we may say that the momentum [impeto
o grado di velocità] acquired at c is related to that acquired at b, in the same manner that
the line ad is related to ab, since the velocity varies directly as the time, a conclusion,
which although employed as a postulate in Proposition III, is here amplified by the
Author.

This point being clear and well-established we pass to the consideration of the
momentum [impeto] in the case of two compound motions, one of which is compounded
of a uniform horizontal and a uniform vertical motion, while the other is compounded
of a uniform horizontal and a naturally accelerated vertical motion. If both components
are uniform, and one at right angles to the other, we have already seen that the square of
the resultant is obtained by adding the squares of the components [p. 257] as will be clear
from the following illustration.

Let us imagine a body to move along the vertical ab with a uniform momentum
[impeto] of 3, and on reaching b to move toward c with a
momentum [velocità ed impeto] of 4, so that during the same
time-interval it will traverse 3 cubits along the vertical and 4 along
the horizontal. But a particle which moves with the resultant
velocity [velocità] will, in the same time, traverse the diagonal ac,
whose length is not 7 cubits—the sum of ab (3) and bc (4)—but 5,
which is in potenza equal to the sum of 3 and 4, that is, the squares
of 3 and 4 when added make 25, which is the square of ac, and is equal to the sum of the
squares {267} of ab and bc. Hence ac is represented by the side—or we may say the
root—of a square whose area is 25, namely 5.

As a fixed and certain rule for obtaining the momentum which [289] results from 
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two uniform momenta, one vertical, the other horizontal, we have therefore the
following: take the square of each, add these together, and extract the square root of the
sum, which will be the momentum resulting from the two. Thus, in the above example,
the body which in virtue of its vertical motion would strike the horizontal plane with a
momentum [forza] of 3, would owing to its horizontal motion alone strike at c with a
momentum of 4; but if the body strikes with a momentum which is the resultant of these
two, its blow will be that of a body moving with a momentum [velocità e forza] of 5; and
such a blow will be the same at all points of the diagonal ac, since its components are
always the same and never increase or diminish.

Let us now pass to the consideration of a uniform horizontal motion compounded
with the vertical motion of a freely falling body starting from rest. It is at once clear that
the diagonal which represents the motion compounded of these two is not a straight line,
but, as has been demonstrated, a semi-parabola, in which the momentum [impeto] is
always increasing because the speed [velocità] of the vertical component is always
increasing. Wherefore, to determine the momentum [impeto] at any given point in the
parabolic diagonal, it is necessary first to fix upon the uniform horizontal momentum
[impeto] and then, treating the body as one falling freely, to find the vertical momentum
at the given point; this latter can be determined only by taking into account the duration
of fall, a consideration which does not enter into the composition of two uniform
motions where the velocities and momenta are always the same; but here where one of
the component motions has an initial value of zero and increases its speed [velocità] in
direct proportion to the time, it follows that the time must determine the speed [velocità]
at the assigned point. It only remains to obtain the momentum resulting from these two
components (as in the case of uniform motions) by placing the square of the resultant
equal {268} to the sum of the squares of the two components. But here again it is better
to illustrate by means of an example.

On the vertical ac lay off any portion ab
which we shall employ as a measure of the space
traversed by a body falling freely along the
perpendicular, likewise as a measure of the time
and also of the speed [grado di velocità] or, we
may say, of the momenta [impeti]. 

It is at once clear that if the momentum of a
[290] body at b, after having fallen from rest at
a, be diverted along the horizontal direction bd,
with uniform motion, its speed will be such
that, during the time-interval ab, it will traverse
a distance which is represented by the line bd
and which is twice as great as ab. Now choose a
point c, such that bc shall be equal to ab, and
through c draw the line ce equal and parallel to
bd; through the points b and e draw the parabola
bei. And since, during the time- interval ab, the 



GALILEO: TWO NEW SCIENCES, FOURTH DAY (TRANS. CREW & DE SALVIO, 1954: 268–270) 

horizontal distance bd or ce, double the length ab, is traversed with the momentum ab, and
since during an equal time-interval the vertical distance bc is traversed, the body acquiring
at c a momentum represented by the same horizontal, bd, it follows that during the time
ab the body will pass from b to e along the parabola be, and will reach e with a
momentum compounded of two momenta each equal to ab. And since one of these is
horizontal and the other vertical, the square of the resultant momentum is equal to the
sum of the squares of these two components, i.e., equal to twice either one of them.

Therefore, if we lay off the distance bf, equal to ba, and draw the diagonal af, it follows
that the momentum [impeto e percossa] at e will exceed that of a body at b after having
fallen from {269} a, or what is the same thing, will exceed the horizontal momentum
[percossa dell'impeto] along bd, in the ratio of af to ab.

Suppose now we choose for the height of fall a distance bo which is not equal to but
greater than ab, and suppose that bg represents a mean proportional between ba and bo;
then, still retaining ba as a measure of the distance fallen through, from rest at a, to b,
also as a measure of the time and of the momentum which the falling body acquires at
b, it follows that bg will be the measure of the time and also of the momentum which the
body acquires in falling from b to o. Likewise just as the momentum ab during the time
ab carried the body a distance along the horizontal equal to twice ab, so now, during the
time-interval bg, the body will be carried in a horizontal direction through a distance
which is greater in the ratio of bg to ba. Lay off lb equal to bg and draw the diagonal al,
from which we have a quantity compounded of two velocities [impeti] one horizontal, the
other vertical; these determine the parabola. The horizontal and uniform velocity is that
acquired at b in falling from a; the other is that acquired at o, or, we may say, at l, by a
body falling through the distance bo, during a time measured by the line bg, [291] which
line bg also represents the momentum of the body. And in like manner we may, by taking
a mean proportional between the two heights, determine the momentum [impeto] at the
extreme end of the parabola where the height is less than the sublimity ab; this mean
proportional is to be drawn along the horizontal in place of bf, and also another diagonal
in place of af, which diagonal will represent the momentum at the extreme end of the
parabola.

To what has hitherto been said concerning the momenta, blows or shocks of
projectiles, we must add another very important consideration; to determine the force
and energy of the shock [forza ed energia della percossa] it is not sufficient to consider only
the speed of the projectiles, but we must also take into account the nature and condition
of the target which, in no small degree, determines the efficiency of the blow. First of all
it is well known that the target suffers violence from the speed {270} [velocità] of the
projectile in proportion as it partly or entirely stops the motion; because if the blow falls
upon an object which yields to the impulse [velocità del percuziente] without resistance
such a blow will be of no effect; likewise when one attacks his enemy with a spear and
overtakes him at an instant when he is fleeing with equal speed there will be no blow but
merely a harmless touch. But if the shock falls upon an object which yields only in part
then the blow will not have its full effect, but the damage will be in proportion to the
excess of the speed of the projectile over that of the receding body; thus, for example, if 
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the shot reaches the target with a speed of 10 while the latter recedes with a speed of 4, 
the momentum and shock [impeto e percossa] will be represented by 6. Finally the blow
will be a maximum, in so far as the projectile is concerned, when the target does not
recede at all but if possible completely resists and stops the motion of the projectile. I
have said in so far as the projectile is concerned because if the target should approach the
projectile the shock of collision [colpo e l’incontro] would be greater in proportion as the
sum of the two speeds is greater than that of the projectile alone.

Moreover it is to be observed that the amount of yielding in the target depends not
only upon the quality of the material, as regards hardness, whether it be of iron, lead,
wool, etc., but [292] also upon its position. If the position is such that the shot strikes
it at right angles, the momentum imparted by the blow [impeto del colpo] will be a
maximum; but if the motion be oblique, that is to say slanting, the blow will be weaker;
and more and more so in proportion to the obliquity; for, no matter how hard the
material of the target thus situated, the entire momentum [impeto e moto] of the shot will
not be spent and stopped; the projectile will slide by and will, to some extent, continue
its motion along the surface of the opposing body.

All that has been said above concerning the amount of momentum in the projectile at the
extremity of the parabola must be understood to refer to a blow received on a line at right
angles to this parabola or along the tangent to the parabola at the given {271} point; for,
even though the motion has two components, one horizontal, the other vertical, neither
will the momentum along the horizontal nor that upon a plane perpendicular to the
horizontal be a maximum, since each of these will be received obliquely.

SAGR. Your having mentioned these blows and shocks recalls to my mind a problem,
or rather a question, in mechanics of which no author has given a solution or said
anything which diminishes my astonishment or even partly relieves my mind.

My difficulty and surprise consist in not being able to see whence and upon what
principle is derived the energy and immense force [energia e forza immensa] which makes
its appearance in a blow; for instance we see the simple blow of a hammer, weighing not
more than 8 or 10 lbs., overcoming resistances which, without a blow, would not yield
to the weight of a body producing impetus by pressure alone, even though that body
weighed many hundreds of pounds. I would like to discover a method of measuring the
force [forza] of such a percussion. I can hardly think it infinite, but incline rather to the
view that it has its limit and can be counterbalanced and measured by other forces, such
as weights, or by levers or screws or other mechanical instruments which are used to
multiply forces in a manner which I satisfactorily understand.

SALV. You are not alone in your surprise at this effect or in obscurity as to the cause
of this remarkable property. I studied this matter myself for a while in vain; but my
confusion merely increased until finally meeting our Academician I received from [293]
him great consolation. First he told me that he also had for a long time been groping in
the dark; but later he said that, after having spent some thousands of hours in speculating
and contemplating thereon, he had arrived at some notions which are far removed from
our earlier ideas and which are remarkable for their novelty. First he told me that he also 
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had for a long time been groping in the dark; but later he said that, after having spent
some thousands of hours in speculating and contemplating thereon, he had arrived at
some notions which are far removed from our earlier ideas and which are remarkable for
their novelty. And since now I know that you would gladly hear what these novel ideas
are I shall not wait for you to ask but promise that, as soon as our discussion of projectiles
is completed, I will explain all these fantasies, or if you please, {272} vagaries, as far as I
can recall them from the words of our Academician. In the meantime we proceed with
the propositions of the author.

PROPOSITION V, PROBLEM

Having given a parabola, find the point, in its axis extended upwards, from which
a particle must fall in order to describe this same parabola.

Let ab be the given parabola, hb its amplitude, and he its axis extended. The problem is
to find the point e from which a body must fall in order that, after the momentum which
it acquires at a has been diverted into a horizontal direction, it will describe the parabola
ab. Draw the horizontal ag, parallel to bh, and having laid off af equal to ah, draw the

straight line bf which will be a tangent to the parabola at
b, and will intersect the horizontal ag at g: choose e such
that ag will be a mean proportional between af and ae.
Now I say that e is the point above sought. That is, if a
body falls from rest at this point e, and if the momentum
acquired at the point a be diverted into a horizontal
direction, and compounded with the momentum
acquired at h in falling from rest at a, then the body will
describe the parabola ab. For if we understand ea to be
the measure of the time of fall from e to a, and also of the
momentum acquired at a, then ag (which is a mean
proportional between ea and af) will represent the time

and momentum of fall from f to a or, what is the same thing, from a to h; and since a
body falling from e, during the time ea, will, owing to the momentum acquired at a,
traverse at uniform speed a horizontal distance which is twice ea, it follows that, the body
will if impelled by the same momentum, during the time-interval ag traverse a distance
equal to twice ag which is the half of bh. This is true because,{273} in the case of uniform
motion, the spaces traversed vary directly as the times. And likewise if the motion be
vertical and start from rest, the body will describe the distance ah in the [294] time ag.
Hence the amplitude bh and the altitude ah are traversed by a body in the same time.
Therefore the parabola ab will be described by a body falling from the sublimity of e. Q. E. F.

COROLLARY
Hence it follows that half the base, or amplitude, of the semi-parabola (which is

one-quarter of the entire amplitude) is a mean proportional between its altitude and the
sublimity from which a falling body will describe this same parabola.
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PROPOSITION VI, PROBLEM

Given the sublimity and the altitude of a parabola, to find its amplitude.

Let the line ac, in which lie the given altitude cb and
sublimity ab, be perpendicular to the horizontal line cd. The
problem is to find the amplitude, along the horizontal cd,
of the semi-parabola which is described with the sublimity
ba and altitude bc. Lay off cd equal to twice the mean
proportional between cb and ba. Then cd will be the
amplitude sought, as is evident from the preceding
proposition.

THEOREM. PROPOSITION VII
If projectiles describe semi-parabolas of the same amplitude, the momentum
required to describe that one whose amplitude is double its altitude is less than that
required for any other.{274}

Let bd be a semi-parabola whose amplitude cd is double its altitude cb; on its axis
extended upwards lay off ba equal to its altitude bc. Draw the line ad which will be a
tangent to the parabola at d and will cut the horizontal line be at the point e, making be
equal to bc and also to ba. It is evident that this parabola will be described by a projectile 
whose uniform horizontal momentum is that which it would acquire at b in falling from 
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rest at a and whose naturally accelerated vertical momentum is that of the body falling
to c, from rest at  b.   From this it follows that the momentum at the terminal point d,
compounded of these two, is represented by the diagonal ae, whose square is equal to the
sum of the squares of the two components. Now let gd be any other parabola whatever
having the same amplitude cd, but whose altitude cg is either greater or less than the
altitude bc. Let hd be the tangent cutting the horizontal [295] through g at k. Select a
point l such that hg:gk =gk:gl. Then from a preceding proposition [V], it follows that gl
will be the {275} height from which a body must fall in order to describe the parabola gd.

Let gm be a mean proportional between ab and gl; then gm will [Prop. IV] represent
the time and momentum acquired at g by a fall from l; for ab has been assumed as a
measure of both time and momentum. Again let gn be a mean proportional between bc
and cg; it will then represent the time and momentum which the body acquires at c in
falling from g. If now we join m and n, this line mn will represent the momentum at d
of the projectile traversing the parabola dg, which momentum is, I say, greater than that
of the projectile travelling along the parabola bd whose measure was given by ae. For since
gn has been taken as a mean proportional between bc and gc; and since bc is equal to be
and also to kg (each of them being the half of dc) it follows that cg:gn = gn:gk, and as cg
or (hg) is to gk so is ng 2 to gk 2: but by construction hg:gk = gk:gl. Hence ng 2:gk 2 = gk:gl.
But gk:gl = gk 2:gm 2, since gm is a mean proportional between kg and gl. Therefore the
three squares ng, kg, mg form a continued proportion, gn 2:gk 2 = gk 2:gm 2.  And the sum
of the two extremes which is equal to the square of mn is greater than twice the square
of gk; but the square of ae is double the square of gk. Hence the square of mn is greater
than the square of ae and the length mn is greater than the length ae. Q.  E.  D. 

[296]
COROLLARY

Conversely it is evident that less momentum will be required to send a projectile from the
terminal point d along the parabola bd than along any other parabola having an elevation
greater or less than that of the parabola bd, for which the tangent at d makes an angle of
45° with the horizontal. From which it follows that if projectiles are fired from the
terminal point d, all having the same speed, but each having a different elevation, the
maximum range, i.e., amplitude of the semi-parabola or of the entire parabola, will be
obtained when the elevation is 45°: the {276} other shots, fired at angles greater or less
will have a shorter range.

SAGR. The force of rigid demonstrations such as occur only in mathematics fills me
with wonder and delight. From accounts given by gunners, I was already aware of the fact
that in the use of cannon and mortars, the maximum range, that is the one in which the
shot goes farthest, is obtained when the elevation is 45° or, as they say, at the sixth point
of the quadrant; but to understand why this happens far outweighs the mere information
obtained by the testimony of others or even by repeated experiment.

SALV. What you say is very true. The knowledge of a single fact acquired through a
discovery of its causes prepares the mind to understand and ascertain other facts without 
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need of recourse to experiment, precisely as in the present case, where by argumentation
alone the Author proves with certainty that the maximum range occurs when the eleva-
tion is 45°. He thus demonstrates what has perhaps never been observed in experience,
namely, that of other shots those which exceed or fall short of 45° by equal amounts have
equal ranges; so that if the balls have been fired one at an elevation of 7 points, the other
at 5, they will strike the level at the same distance: the same is true if the shots are fired
at 8 and at 4 points, at 9 and at 3, etc. Now let us hear the demonstration of this.

[297]
THEOREM.  PROPOSITION VIII

The amplitudes of two parabolas described by projectiles fired with the same speed,
but at angles of elevation which exceed and fall short of 45° by equal amounts, are
equal to each other.

In the triangle mcb let the horizontal side bc and the vertical cm, which form a right
angle at c, be equal to each other; then the angle mbc will be a semi-right angle; let the
line cm be prolonged to d, such a point that the two angles at
b, namely mbe and mbd, one above and the other below the
diagonal mb, shall be equal. It is now to be proved that in the
case of two parabolas {277} described by two projectiles fired
from b with the same speed, one at the angle of ebc, the other
at the angle of dbc, their amplitudes will be equal. Now since
the external angle bmc is equal to the sum of the internal angles
mdb and dbm we may also equate to them the angle mbc; but
if we replace the angle dbm by mbe, then this same angle mbc
is equal to the two mbe and bdc: and if we subtract from each
side of this equation the angle mbe, we have the remainder bdc
equal to the remainder ebc. Hence the two triangles dcb and bce
are similar. Bisect the straight lines dc and ec in the points h
and f: and draw the lines hi and fg parallel to the horizontal cb,
and choose l such that dh:hi = ih:hl. Then the triangle ihl will
be similar to ihd, and also to the egf; and since ih and gf are equal, each being half of bc,
it follows that hl is equal to fe and also to fc; and if we add to each of these the common
part fh, it will be seen that ch is equal to fl.

Let us now imagine a parabola described through the points h and b whose altitude is
hc and sublimity hl. Its amplitude will be cb which is double the length hi since hi is a
mean proportional between dh (or ch) and hl. The line db is tangent to the parabola at
b, since ch is equal to hd. If again we imagine a parabola described through the points f
and b, with a sublimity fl and altitude fc, of which the mean proportional is fg, or
one-half of cb, then, as before, will cb be the amplitude and the line eb a tangent at b; for
ef and fc are equal. 

[298]
But the two angles dbc and ebc, the angles of elevation, differ by equal amounts from

a 45° angle. Hence follows the proposition.
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THEOREM.  PROPOSITION IX
The amplitudes of two parabolas are equal when their altitudes and sublimities are
inversely proportional.{278}

Let the altitude gf of the parabola fh bear to the altitude cb of the parabola bd the same
ratio which the sublimity ba bears to the
sublimity fe, then I say the amplitude hg
is equal to the amplitude dc. For since
the first of these quantities, gf, bears to
the second cb the same ratio which the
third, ba, bears to the fourth fe, it
follows that the area of the rectangle gf.fe
is equal to that of the rectangle cb.ba;
therefore squares which are equal to
these rectangles are equal to each other.
But [by Proposition VI] the square of
half of gh is equal to the rectangle gf.fe;

and the square of half of cd is equal to the rectangle cb.ba. Therefore these squares and
their sides and the doubles of their sides are equal. But these last are the amplitudes gh
and cd.  Hence follows the proposition.

LEMMA FOR THE FOLLOWING PROPOSITION
If a straight line be cut at any point whatever and mean proportionals between this
line and each of its parts be taken, the sum of the squares of these mean
proportionals is equal to the square of the entire line.

Let the line ab be cut at c. Then I say that the square of the mean proportional between
ab and ac plus the square of the mean proportional between ab and
cb is equal to the square of the whole line ab. This is evident as soon
as we describe a semicircle upon the entire line ab, erect a
perpendicular cd at c, and draw da and db. For da is a mean
proportional between ab and ac while [299] db is a mean
proportional between ab and bc: and since the angle adb, inscribed
in a semicircle, is a right angle the sum of {279} the squares of the lines da and db is equal
to the square of the entire line ab. Hence follows the proposition.

THEOREM.   PROPOSITION X
The momentum [impetus seu momentum] acquired by a particle at the terminal
point of any semi-parabola is equal to that which it would acquire in falling through
a vertical distance equal to the sum of the sublimity and the altitude of the
semi-parabola.*

  * In modern mechanics this well-known theorem assumes the following from: The speed of a projectile at any point is that
produced by a fall from the directrix.    [Trans.]
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Let ab be a semi-parabola having a sublimity da and an altitude ac, the sum of which
is the perpendicular dc. Now I say the momentum of the particle at b is the
same as that which it would acquire in falling freely from d to c. Let us
take the length of dc itself as a measure of time and momentum, and lay
off cf equal to the mean proportional between cd and da; also lay off ce a
mean proportional between cd and ca. Now cf is the measure of the time
and of the momentum acquired by fall, from rest at d, through the
distance da; while ce is the time and momentum of fall, from rest at a,
through the distance ca; also the diagonal, ef will represent a momentum
which is the resultant of these two, and is therefore the momentum at the
terminal point of the parabola, b.

And since dc has been cut at some point a and since cf and ce are mean
proportionals between the whole of cd and its parts, da and ac, it follows, from the
preceding lemma, that the sum of the squares of these mean proportionals is equal to the
square of the whole: but the square of ef is also equal to the sum of these same squares;
whence it follows that the line ef is equal to dc.

Accordingly the momentum acquired at c by a particle in falling from d is the same as
that acquired at b by a particle traversing the parabola ab. Q.  E.  D.

{280}
COROLLARY

Hence it follows that, in the case of all parabolas where the sum of the sublimity and
altitude is a constant, the momentum at the terminal point is a constant.

PROBLEM.  PROPOSITION XI
Given the amplitude and the speed [impetus] at the terminal point of a semi-
parabola, to find its amplitude.

Let the given speed be represented by the vertical line ab,
and the amplitude by the horizontal line bc; it is required to
find the sublimity of the semi-parabola whose terminal speed
is ab and amplitude bc. From what precedes [Cor. Prop. V]
it is clear that half the amplitude bc is a mean proportional
between [300]the altitude and sublimity of the parabola of
which the terminal speed is equal, in accordance with the
preceding proposition, to the speed acquired by a body in
falling from rest at a through the distance ab. Therefore the
line ba must be cut at a point such that the rectangle formed
by its two parts will be equal to the square of half bc, namely
bd. Necessarily, therefore, bd must not exceed the half of ba;
for of all the rectangles formed by parts of a straight line the
one of greatest area is obtained when the line is divided into 
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two equal parts. Let e be the middle point of the line ab; and now if bd be equal to be the
problem is solved; for be will be the altitude and ea the sublimity of the parabola.
(Incidentally we may observe a consequence already demonstrated, namely: of all
parabolas described with any given terminal speed that for which the elevation is 45° will
have the maximum amplitude.)

But suppose that bd is less than half of ba which is to be {281} divided in such a way
that the rectangle upon its parts may be equal to the square of bd. Upon ea as diameter
describe a semi-circle efa, in which draw the chord af, equal to bd: join fe and lay off the
distance eg equal to fe. Then the rectangle bg.ga plus the square of eg will be equal to the
square of ea, and hence also to the sum of the squares of af and fe. If now we subtract the
equal squares of fe and ge there remains the rectangle bg.ga equal to the square of af, that
is, of bd, a line which is a mean proportional between bg and ga; from which it is evident
that the semi-parabola whose amplitude is bc and whose terminal speed [impetus] is
represented by ba has an altitude bg and a sublimity ga.

If however we lay off bi equal to ga, then bi will be the altitude of the semi-parabola
ic, and ia will be its sublimity. From the preceding demonstration we are able to solve the
following problem.

PROBLEM.  PROPOSITION XII
To compute and tabulate the amplitudes of all semi-parabolas which are described
by projectiles fired with the same initial speed [impetus].

From the foregoing it follows that, whenever the sum of the altitude and sublimity is
a constant vertical height for any set of parabolas, these parabolas are described by
projectiles having the same initial speed; all vertical heights thus [301] obtained are

therefore included between two parallel horizontal
lines. Let cb represent a horizontal line and ab a
vertical line of equal length; draw the diagonal ac; the
angle acb will be one of 45°; let d  be the middle point
of the vertical line ab. Then the semi-parabola dc is
the one which is determined by the sublimity ad and
the altitude db, while its terminal speed at c is that
which would be acquired at b by a particle falling
from rest at a. If now ag be drawn parallel to bc, the
sum of the altitude and sublimity for any other
semi-parabola having the same terminal speed will, in
the manner explained, be equal to the distance
between the parallel lines ag, and bc. Moreover, since
{282} it has already been shown that the amplitudes of
two semi-parabolas are the same when their angles of
elevation differ from 45° by like amounts it follows
that the same computation which is employed for the
larger elevation will serve also for the smaller.  Let us 
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also assume 10000 as the greatest amplitude for a parabola whose angle of elevation is
45°; this then will be the length of the line ba and the amplitude of the semi-parabola bc. 
This number, 10000, is selected because in these calculations we employ a table of
tangents in which this is the value of the tangent of 45°. And now, coming down to
business, draw the straight line ce making an acute angle ecb greater than acb: the problem
now is to draw the semi-parabola to which the line ec is a tangent and for which the sum
of the sublimity and the altitude is the distance ba.  Take the length of the tangent* be
from the table of tangents, using the angle bce as an argument: let f  be the middle point
of be ; next find a third proportional to bf and bi (the half of bc), which is of necessity
greater than fa.**  Call this fo.  We have now discovered that, for the parabola inscribed
[302] in the triangle ecb having the tangent ce  and the amplitude cb, the altitude is bf and
the sublimity fo. But the total length of bo exceeds the distance between the parallels ag
and cb, while our problem was to keep it equal to this distance: for both the parabola
sought and the parabola dc are described {283} by projectiles fired from c with the same
speed. Now since an infinite number of greater and smaller parabolas, similar to each
other, may be described within the angle bce we must find another parabola which like
cd has for the sum of its altitude and sublimity the height ba, equal to bc.

Therefore lay off cf so that, ob:ba = bc:cr; then cr will be the amplitude of a
semi-parabola for which bce is the angle of elevation and for which the sum of the altitude
and sublimity is the distance between the parallels ga and cb, as desired. The process is
therefore as follows: One draws the tangent of the given angle bce; takes half of this
tangent, and adds to it the quantity, fo, which is a third proportional to the half of this
tangent and the half of bc; the desired amplitude cr is then found from the following
proportion ob:ba = bc:cr.  For example let the angle ecb be one of 50° its tangent is 11918,
half of which, namely bf, is 5959; half of bc is 5000; the third proportional of these halves
is 4195, which added to bf gives the value 10154 for bo. Further, as ob is to ab, that is,
as 10154 is to 10000, so is bc, or 10000 (each being the tangent of 45°) to cr, which is
the amplitude sought and which has the value 9848, the maximum amplitude being bc,
or 10000. The amplitudes of the entire parabolas are double these, namely, 19696 and
20000. This is also the amplitude of a parabola whose angle of elevation is 40°, since it
deviates by an equal amount from one of 45°.

[303]

SAGR. In order to thoroughly understand this demonstration I need to be shown how
the third proportional of bf and bi is, as the Author indicates, necessarily greater than fa.

SALV. This result can, I think, be obtained as follows. The square of the mean
proportional between two lines is equal to the rectangle formed by these two lines.
Therefore the square of bi (or of bd which is equal to be) must be equal to the rectangle
formed by fb and the desired third proportional. This third proportional is necessarily 

* The reader will observe that the word “tangent” is here used in sense somewhat different from that of the preceding
sentence.  The “tangent ec” is a line which touches the parabola at c ; but the “tangent eb” is the side of the right-angled
triangle which lies opposite the angle ecb, a line whose length is proportional to the numerical value of the tangent of this
angle. [Trans.]

** This fact is demonstrated in the third paragraph below, when laid off above the point f  it extends beyond the parallel ag.
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greater than fa because the rectangle formed by bf and fa is less than the square of bd by
an amount equal to the square of df, as shown in Euclid, II.I. Besides it is to be observed
that the point f, which is the middle point of the {284} tangent eb, falls in general above
a and only once at a; in which cases it is self-evident that the third proportional to the
half of the tangent and to the sublimity be lies wholly above a. But the Author has taken
a case where it is not evident that the third proportional is always greater than fa, so that 

Now let us proceed. It will be worth while, by the use of this table, to compute another
giving the altitudes of these semi-parabolas described by projectiles having the same initial
speed. The construction is as follows: [304]

  Amplitudes of semi-parabolas described       Altitudes of semi-parabolas described
     with the same initial speed                           with the same initial speed
    

Angle of          Angle of                    Angle of                            Angle of
ElevationE           ElevationE                 ElevationE                         ElevationE

45 10000 1 3 46 5173
46 9994 44 2 13 47 5346
47 9976 43 3 28 48 5523
48 9945 42 4 50 49 5698
49 9902 41 5 76 50 5868
50 9848 40 6 108 51 6038
51 9782 39 7 150 52 6207
52 9704 38 8 194 53 6379
53 9612 37 9 245 54 6546
54 9511 36 10 302 55 6710
55 9396 35 11 365 56 6873
56 9272 34 12 432 57 7033
57 9136 33 13 506 58 7190
58 8989 32 14 585 59 7348
59 8829 31 15 670 60 7502
60 8659 30 16 760 61 7649
61 8481 29 17 855 62 7796
62 8290 28 18 955 63 7939
63 8090 27 19 1060 64 8078
64 7880 26 20 1170 65 8214
65 7660 25 21 1285 66 8346
66 7431 24 22 1402 67 8474
67 7191 23 23 1527 68 8597
68 6944 22 24 1685             69 8715
69 6692 21 25 1786 70 8830
70 6428 20 26 1922 71 8940
71 6157 19 27 2061 72 9045
72 5878 18 28 2204 73 9144
73 5592 17 29 2351 74 9240
74 5300 16 30 2499 75 9330
75 5000 15 31 2653 76 9415
76 4694 14 32 2810 77 9493
77 4383 13 33 2967 78 9567
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  Amplitudes of semi-parabolas described       Altitudes of semi-parabolas described
     with the same initial speed                           with the same initial speed
    

Angle of          Angle of                    Angle of                            Angle of
ElevationE           ElevationE                 ElevationE                         ElevationE

78 4067 12 34 3128 79 9636
79 3746 11 35 3289 80 9698
80 3420 10 36 3456 81 9755
81 3090 9 37 3621 82 9806
82 2756 8 38 3793 83 9851
83 2419 7 39 3962 84 9890
84 2079 6 40 4132 85 9924
85 1736 5 41 4302 86 9951
86 1391 4 42 4477 87 9972
87 1044 3 43 4654 88 9987
88 698 2 44 4827 89 9998
89 349 1 45 5000 90 10000

[305]

PROBLEM.   PROPOSITION XIII
From the amplitudes of semi-parabolas given in the preceding table to find the
altitudes of each of the parabolas described with the same initial speed.

Let bc denote the given amplitude; and let ob, the sum of the altitude and sublimity, be
the measure of the initial speed which is understood to remain constant. Next we must
find and determine the altitude, which we shall accomplish by so dividing ob that the

rectangle contained by its parts shall be equal to the square of half
the amplitude, bc. Let f denote this point of division and d and i  be
the middle points of ob and bc respectively. The square of ib is equal
to the rectangle bf.fo; but the square of do is equal to the sum of the
rectangle bf.fo and the {286} square of fd. If, therefore, from the
square of do we subtract the square of be which is equal to the
rectangle bf.fo, there will remain the square of fd. The altitude in
question, bf, is now obtained by adding to this length, fd, the line 
bd. The process is then as follows: From the square of half of bo
which is known, subtract the square of be which is also known; take
the square root of the remainder and add to it the known length db;
then you have the required altitude, bf.
Example. To find the altitude of a semi-parabola described with an
angle of elevation of 55°.  From the preceding table the amplitude is

seen to be 9396, of which the half is 4698, and the square 22071204. When this is
subtracted from the square of the half of bo, which is always 25000000, the remainder
is 2928796,  of which the square root [306] is approximately 1710.  Adding this to the
half of bo, namely 5000, we have 6710 for the altitude of bf.
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It will be worth while to add a third table giving the altitudes and sublimities for
parabolas in which the amplitude is a constant.

SAGR. I shall be very glad to see this; for from it I shall learn the difference of speed
and force [degl'impeti e delle forze] required to fire projectiles over the same range with
what we call mortar shots. This difference will, I believe, vary greatly with the elevation
so that it, for example, one wished to employ an elevation of 3° or 4°, or 87° or 88° and
yet give the ball the same range which it had with an elevation of 45° (where we have
shown the initial speed to be a minimum) the excess of force required will, I think, be
very great.

SALV. You are quite right, sir; and you will find that in order to perform this operation
completely, at all angles of elevation, you will have to make great strides toward an
infinite speed. We pass now to the consideration of the table. 

[307]
Table giving the altitudes and sublimities of parabolas of 

constant amplitude, namely  10000,  computed 
for each degree of elevation

        Angle of                                                                   Angle of 

ElevationE Altitude Sublimity ElevationE Altitude Sublimity
1 87 286533 46 5177 4828
2 175 142450 47 5363 4662
3 262 95802 48 5553 4502
4 349 71531 49 5752 4345
5 437 57142 50 5959 4196
6 525 47573 51 6174 4048
7 614 40716 52 6399 3906
8 702 35587 53 6635 3765
9 792 31565 54 6882 3632
10 881 28367 55 7141 3500
11 972 25720 56 7413 3372
12 1063 23518 57 7699 3247
13 1154 21701 58 8002 3123
14 1246 20056 59 8332 3004
15 1339 18663 60 8660 2887
16 1434 17405 61 9020 2771
17 1529 16355 62 9403 2658
18 1624 15389 63 9813 2547
19 1722 14522 64 10251 2438
20 1820 13736 65 10722 2331
21 1919 13024 66 11230 2226
22 2020 12376 67 11779 2122
23 2123 11778 68 12375 2020
24 2226 11230 69 13025 1919
25 2332 10722 70 13237 1819
26 2439 10253 71 14521 1721
27 2547 9814 72 15388 1624
28 2658 9404 73 16354 1528
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Table giving the altitudes and sublimities of parabolas of 
constant amplitude, namely  10000,  computed 

for each degree of elevation {cont.}

        Angle of                                                                          Angle of 
ElevationE Altitude   Sublimity ElevationE   Altitude  Sublimity

29 2772 9020 74 17437 1433
30 2887 8659 75 18660 1339
31 3008 8336 76 20054 1246
32 3124 8001 77 21657 1154
33 3247 7699 78 23523 1062
34 3373 7413 79 25723 972
35 3501 7141 80 28356 881
36 3633 6882 81 31569 792
37 3768 6635 82 35577 702
38 3906 6395 83 40222 613
39 4049 6174 84 47572 525
40 4196 5959 85 57150 437
41 4346 5752 86 71503 349
42 4502 5553 87 95405 262
43 4662 5362 88 143181 174
44 4828 5177 89 286449 87
45 5000 5000 90  Infinita  

[308] {288}
PROPOSITION XIV

To find for each degree of elevation the altitudes and sublimities of parabolas of
constant amplitude.

The problem is easily solved. For if we assume a constant amplitude of 10000, then half
the tangent at any angle of elevation will be the altitude. Thus, to illustrate, a parabola
having an angle of elevation of 30° and an amplitude of 10000, will have an altitude of
2887, which is approximately one-half the tangent. And now the altitude having been
found, the sublimity is derived as follows. Since it has been proved that half the
amplitude of a semi-parabola is the mean proportional between the altitude and
sublimity, and since the altitude has already been found, and since the semi-amplitude
is a constant, namely 5000, it follows that if we divide the square of the semi-amplitude
by the altitude we shall obtain the sublimity sought. Thus in our example the altitude was
found to be 2887; the square of 5000 is 25,000,000, which divided by 2887 gives the
approximate value of the sublimity, namely 8659.

SALV. Here we see, first of all, how very true is the statement made above, that, for
different angles of elevation, the greater the deviation from the mean, whether above or
below, the greater the initial speed [impeto e violenza] required to carry the projectile over
the same range. For since the speed is the resultant of two motions, namely, one
horizontal and uniform, the other vertical and naturally accelerated; and since the sum 
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of the altitude and sublimity represents this speed, it is seen from the preceding table that
this sum is a {289} minimum for an elevation of 45° where the altitude and sublimity are
equal, namely, each 5000; and their sum 10000. But if we choose a greater elevation, say
50°, we shall find the altitude 5959, and the sublimity 4196, giving a sum of 10155; in
like manner we shall find that this is precisely the value of the speed at 40° elevation, both
angles deviating equally from the mean.

Secondly it is to be noted that, while equal speeds are required for each of two
elevations that are equidistant from the mean, there is this curious alternation, namely,
that the altitude and sublimity at the greater elevation correspond inversely to the
sublimity and altitude at the lower elevation. Thus in the [309] preceding example an
elevation of 50° gives an altitude of 5959 and a sublimity of 4196; while an elevation of
40° corresponds to an altitude of 4196 and a sublimity of 5959. And this holds true in
general; but it is to be remembered that, in order to escape tedious calculations, no
account has been taken of fractions which are of little moment in comparison with such
large numbers.

SAGR. I note also in regard to the two components of the initial speed [impeto] that the
higher the shot the less is the horizontal and the greater the vertical component; on the 
other hand, at lower elevations where the shot reaches only a small height the horizontal
component of the initial speed must be great. In the case of a projectile fired at an
elevation of 90°, I quite understand that all the force [forza] in the world would not be
sufficient to make it deviate a single finger's breadth from the perpendicular and that it 
would necessarily fall back into its initial position; but in the case of zero elevation, when
the shot is fired horizontally, I am not so certain that some force, less than infinite, would
not carry the projectile some distance; thus not even a cannon can fire a shot in a
perfectly horizontal direction, or as we say, point blank, that is, with no elevation at all.
Here I admit there is some room for doubt. The fact I do not deny outright, because of
another phenomenon apparently no less remarkable, but yet one for which I have
conclusive evidence. This phenomenon is the impossibility of stretching {290} a rope in
such a way that it shall be at once straight and parallel to the horizon; the fact is that the
cord always sags and bends and that no force is sufficient to stretch it perfectly straight.

SALV. In this case of the rope than, Sagredo, you cease to wonder at the phenomenon
because you have its demonstration; but if we consider it with more care we may possibly
discover some correspondence between the case of the gun and that of the string. The
curvature of the path of the shot fired horizontally appears to result from two forces, one
(that of the weapon) drives it horizontally and the other (its own weight) draws it
vertically downward. So in stretching the rope you have the force which pulls it
horizontally and its own weight which acts downwards. The circumstances in these two
cases are, therefore, very similar. If then you attribute to the weight of the rope a power
and [310] energy [possanza ed energia] sufficient to oppose and overcome any stretching
force, no matter how great, why deny this power to the bullet?

Besides I must tell you something which will both surprise and please you, namely,
that a cord stretched more or less tightly assumes a curve which closely approximates the
parabola. This similarity is clearly seen if you draw a parabolic curve on a vertical plane 
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and then invert it so that the apex will lie at the bottom and the base remain horizontal;
for, on hanging a chain below the base, you will observe that, on slackening the chain
more or less, it bends and fits itself to the parabola; and the coincidence is more exact in
proportion as the parabola is drawn with less curvature or, so to speak, more stretched;
so that using parabolas described with elevations less than 45° the chain fits its parabola
almost perfectly.

SAGR. Then with a fine chain one would be able to quickly draw many parabolic lines
upon a plane surface.

SALV. Certainly and with no small advantage as I shall show you later.
SIMP. But before going further, I am anxious to be convinced at least of that

proposition of which you say that there is a {291} rigid demonstration; I refer to the
statement that it is impossible by any force whatever to stretch a cord so that it will lie
perfectly straight and horizontal.

SAGR. I will see if I can recall the demonstration; but in order to understand it,
Simplicio, it will be necessary for you to take for granted concerning machines what is
evident not alone from experiment but also from theoretical considerations, namely, that
the velocity of a moving body [velocità del movente], even when its force [forza] is small,
can overcome a very great resistance exerted by a slowly moving body, whenever the
velocity of the moving body bears to that of the resisting body a greater ratio than the
resistance [resistenza] of the resisting body to the force [forza] of the moving body.

SIMP. This I know very well for it has been demonstrated by Aristotle in his Questions 
in Mechanics; it is also clearly seen in the lever and the steelyard where a counterpoise
weighing not more than 4 pounds will lift a weight of 400 provided that the distance of
the counterpoise from the axis about which the steelyard rotates be more than one
hundred times as great as the distance between this axis and the point of support for
[311] the large weight. This is true because the counterpoise in its descent traverses a
space more than one hundred times as great as that moved over by the large weight in the
same time; in other words the small counterpoise moves with a velocity which is more
than one hundred times as great as that of the large weight.

SAGR. You are quite right; you do not hesitate to admit that however small the force
[forza] of the moving body it will overcome any resistance, however great, provided it
gains more in velocity than it loses in force and weight [vigore e gravità].  Now let us
return to the case of the cord. In the accompanying figure ab represents a line passing
through two fixed points a and b; at the extremities of this line hang, as you see, two large
weights c and d, which stretch it with great force and keep it truly straight, seeing that it
is merely a line without weight. Now I wish to remark that if from the middle point of
this line, {292} which we may call e, you suspend any small weight, say h, the line ab will
yield toward the point f and on account of its elongation will compel the two heavy
weights c and d to rise. This I shall demonstrate as follows: with the points a and b as
centers describe the two quadrants, eig and elm; now since the two semi-diameters ai and
bl are equal to ae and eb, the remainders fi and fl are the excesses of the lines af and fb
over ae and eb; they therefore determine the rise of the weights as c and d, assuming of
course that the weight h has taken the position f.  But the weight h [312]will take the 
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position f, whenever the line ef which represents the descent of h bears to the line fi—that
is, to the rise of the weights c and d—a ratio which is greater than the ratio of the weight
of the two large bodies to that of the body h. Even when the weights of c and d are very
great and that of h very small this will happen; for the excess of the weights c and d over
the weight of h can never be so great but that the excess of the tangent ef over the segment
fi may be proportionally greater. This may {293} be proved as follows: Draw a circle of
diameter gai; draw the line bo such that the ratio of its length to another length c, c > d,
is the same as the ratio of the weights c and d to the weight h. Since c > d, the ratio of bo
to d is greater than that of bo to c. Take be a third proportional to ob and d; prolong the
diameter gi to a point f such that gi:if = oe:eb; and from the point f draw the tangent fn;
then since we already have oe:eb = gi:if, we shall obtain, by compounding ratios, ob:eb =
gf:if. But d is a mean proportional between ob and be; while nf is a mean proportional
between gf and fi. Hence nf  bears to fi the same ratio as that of cb to d, which is greater
than that of the weights c and d to the weight h. Since then the descent, or velocity, of
the weight h bears to the rise, or velocity, of the weights c and d a greater ratio than the
weight of the bodies c and d bears to the weight of h, it is clear that the weight h will
descend and the line ab will cease to be straight and horizontal.

And now this which happens in the case of a weightless cord ab when any small weight
h is attached at the point e, happens also when the cord is made of ponderable matter but
without any attached weight; because in this case the material of which the cord is
composed functions as a suspended weight.

SIMP.  I am fully satisfied.   So now Salviati can explain, as he promised, the advantage
of such a chain and, afterwards, present the speculations of our Academician on the 
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subject of impulsive forces [forza della percossa].
SALV. Let the preceding discussions suffice for to-day; the hour is already late and the

time remaining will not permit us to clear up the subjects proposed; we may therefore
postpone our meeting until another and more opportune occasion.

SAGR. I concur in your opinion, because after various conversations with intimate
friends of our Academician I have concluded that this question of impulsive forces is very
obscure, and I think that, up to the present, none of those who have treated [313] this
subject have been able to clear up its dark corners which lie almost beyond the reach of
human imagination; among the various views which I have heard expressed one, strangely
fantastic, {294} remains in my memory, namely, that impulsive forces are indeterminate,
if not infinite. Let us, therefore, await the convenience of Salviati. Meanwhile tell me
what is this which follows the discussion of projectiles.

SALV. These are some theorems pertaining to the centers of gravity of solids,
discovered by our Academician in his youth, and undertaken by him because he
considered the treatment of Federigo Comandino to be somewhat incomplete. The
propositions which you have before you would, he thought, meet the deficiencies of
Comandino's book. The investigation was undertaken at the instance of the Illustrious
Marquis Guid'Ubaldo Dal Monte, a very distinguished mathematician of his day, as is
evidenced by his various publications. To this gentleman our Academician gave a copy 
of this work, hoping to extend the investigation to other solids not treated by
Comandino. But a little later there chanced to fall into his hands the book of the great
geometrician, Luca Valerio, where he found the subject treated so completely that he left
off his own investigations, although the methods which he employed were quite different
from those of Valerio.

SAGR. Please be good enough to leave this volume with me until our next meeting so
that I may be able to read and study these proposition in the order in which they are
written.

SALV. It is a pleasure to comply with your request and I only hope that the
propositions will be of deep interest to you.

END  OF  THE  FOURTH  DAY.

Galileo Galilei, Dialogues Concerning Two New Sciences, translated by Henry Crew & Alfonso de Salvio with an
introduction by Antonio Favaro, Dover Publications, Inc., New York, 1954: 244–294. (Fourth Day). Originally published
in 1904 by the MacMillan company.
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APPENDIX
Containing some theorems, their proofs, dealing with centers of gravity of solid bodies,

written by the same Author at an earlier date.*

  * Following the example of the National Edition, this Appendix which covers 18 pages of the Leyden
Edition of 1638 is here omitted [in the Crew & De Salvio edition (Transc)] as being of minor interest.
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