Saliteo Galitei

Lincean Academician
Chief Philosopher and M athematician to the M ost Serene G rand Duke of T uscany

D iscourses \&
 M athematical D emonstrations Concerning
 T wo N ew Sciences
 Pertaining to M echanics \& Local M otions

With an Appendix
$\mathcal{O n}^{\prime}$ Centers of Grabity of $\mathscr{S}^{\text {olids }}$

$$
\begin{aligned}
& \text { Leyden } \\
& \text { At the Elzevirs, } 1638 \\
& * * *
\end{aligned}
$$

To which is added a further dialogue
On the Force of Percussion

Galileo Galili T wo N ew Sciences

Jncluding Centers of Gravity \&
 Force of Percussion

Translated, with
Introduction and N otes, by

Stillman Drake

[THE APPENDIX]

TRANSCRIBER'S NOTES (Added)
The "Appendix" included in Stillman D rake's 1974 translation of Galileo's T wo N ew Sciences (1638) is presented here with a number of minor cosmetic changes intended to render the work more readable in Portable D ocument Form (PDF). To this end line spaces have been introduced to emphasize the various lemmas, propositions and postulates discussed in the text. For additional clarity the original pagination has been omitted entirely, and except when occurring as natural breaks between sections modern pagenumbers denoted hereby \{N N \}havebeen included within thetext. Rather than retaining the large margins and accompanying small marginal figures of the 1974 publication enlarged figures have been incorporated within thetext to match the format adopted for the "Added D ay" and previous versions of the T wo N ew Sciences from the present source:

Galileo G ali lei, D ialoguesC on cerningT wo N ew Sciences, translated by H enry Crew \& Alfonso deSalvio, with an introduction by Antonio Favaro, D over Publications, Inc., N ew York, 1954.

Appendix

In which are contained theorems and related demonstrations concerning the center of gravity of solids, written earlier Fy the Author ${ }^{1}$

POSTULATE

We assume that, of equal weights similarly arranged on different balances, if the center of gravity of one composite [of weights] divides its balance in a certain ratio, then the center of gravity of the other composite also divides its balance in the same ratio.

LEM MA

Let line $A B$ be bisected at C, and the half $A C$ be divided at E so that the ratio of $B E$ to $E A$ is that of $A E$ to $E C$. I say that $B E$ is double EA.

Indeed, since EA is to EC as BE is to EA, we shall have, by composition and permutation [of ratios], $A E$ to $E C$ as $B A$ is to $A C$; but as $A E$ is to $E C$ (that is, as $B A$ is to $A C), B E$ is to $E A$, whence $B E$ is double $E A$.

These things granted, it is to be demonstrated [that]

[PROPOSITION 1]

If any number of magnitudes equally exceed one another the $\{262\}$ excesses being equal to the least of them, and they are so arranged on a balance as to hang at equal distances, the center of gravity of all these dividesthebalance so that the part on theside of the smaller [magnitudes] is double the other part.

1. These theorems date, in part at least, from the period 1585-87. T he last proposition and its lemma appear to have been written first, having been submitted by G alileo with an application for a position at the University of Bologna in 1587. Early in the next year he corresponded with Christopher Clavius and G uidobaldo del M onteabout thefirst proposition. Theothers may have been done in response to encouragement from the latter and from Michael Coignet (1544-1623) at that time. A plan to publish this work in 1613 was postponed, cf. note 37 to Second Day. In the original printing the lemmas, theorems, and corollaries were not numbered, and they were not al ways clearly distinguished typographically both have been donehere for ease of reference.

Thus, on balance AB , let hang at equal distances any number of magnitudes $F_{\text {,, }}, \mathrm{H}, \mathrm{K}, \mathrm{N}$, such as described above, of which theleast is N, let the points of suspension be A, C, D, E, B, and let A be the center of gravity of all the magnitudes thus arranged. It is to be shown that the part of the balance $B X$, on the side of the lesser magnitudes, is double $X A$, the other part.

Bisect the balance at point D, which lies either at some point of suspension, or necessarily fallsmidway between two suspension points. Theremaining distancesbetween suspension [points], A and [C, C and] D, are to be bisected at points M and I , and all the magnitudes are to be divided into parts equal to N. Then the number of parts of F will be equal to the number of magnitudes that hang from the balance, while the parts of G will be onefewer, and so on for the rest. Thus the parts of F are N, O, R, S, T; those of G [are] $N, 0, R, S$, those of H [are] N, O, R, and finally the parts of K are N and 0 . All the parts marked N are then equal to [those in] F; all the parts marked 0 will beequal to G, those marked R will be equal to H, those marked S will be equal to K; and finally the magnitude T is equal to N.

Sinceall the magnitudes marked N areequal to oneanother, their point of balance will be at D, which bisects the balance $A B$. For the same reason, the point of balance for all the magnitudes marked 0 is at I ; of those marked R, it is at C; those marked S have their point of balance at M, while finally T is hung at A. Thus along the balance $A D$, [considered as separated from D B], there are hung, at the equal distances D I, C M, A, magnitudes that equally exceed oneanother and whoseexcess is equal to theleast thereof. But [of these] the greatest [magnitude], composed of all the N 's, hangs [as if] from D, while the least (that is, T) hangs from A , and the others are all arranged in order.

And again, there is the other balance $A B$ on which corresponding magnitudes are arranged in the sameorder [though reversed], equal in number and sizesto theforegoing. W herefore we see the balances AB and AD divided in the same ratio by the centers [of gravity] of all the magnitudes $\{263\}$ compounded. But the center of gravity of the said magnitudes [so arranged] is X; ${ }^{2}$ therefore X divides the balances $B A$ and $A D$ in the same ratio, in such a way that as $B X$ is to $X A$, so $X A$ is to $X D$. Therefore $B X$ is double $X A$, by the above lemma. Q.E.D.

[PROPOSITION 2]

If to a parabolic conoid one figure is inscribed and another is circumscribed,[both] of cylinders having equal height, and theaxi sof theconoid isdivided in such a way that the part toward the apex is double the part toward the base, the center of gravity of the inscribed figure will be closer to the base of the section than [will] the said division point, while the center of gravity of the circumscribed figure will be farther than that same point from the base of the conoid and the distance from that point of each of the two centerswill be equal to the linethat is onesixth theheight of one of the cylinders of which the figures are constructed.

Let there be a parabolic conoid and the said figures, oneinscribed and the other circumscribed, let the axis of the conoid beAE, divided at N so that AN is doubleNE. It is to be shown that the center of gravity of the inscribed figure lies in line NE, while that of the circumscribed figure lies in AN .

Let thefigures thus arranged becut by a planethrough the axis, and let the parabola BAC be cut, the [inter]section of the cutting plane with the base of the conoid being line $B C$; the sections of the cylinders are rectangular figures, as appears in the diagram.

The first inscribed cylinder, of which the axis is DE, has to the cylinder of which the axis is $D Y$ the same ratio that the square [on] ID has to the square [on] SY, which is [in turn] as DA is to AY. ${ }^{3}$ The cylinder of which the axis is $D Y$ is, moreover, to the cylinder $Y Z$ as the square on $S Y$ is to the square on $R Z$, which is as YA to $A Z$, and for the same reason the cylinder of which the axis is $Z Y$, to that of which the axis is $Z U$, is as $Z A$ is to $A U$. Thus the said cylinders are to one another \{264\}as the lines D A, AY , ZA, AU ; but these [lines] equally exceed one another, and the excess is equal to the least of them, hence $A Z$ isthe double of $A U$, $A Y$ is itstriple, and DA its quadruple. Therefore the said cylinders are magni-
 tudesequally exceeding oneanother, whoseexcess is equal to the least of them. M oreover, line $X M$ is that along which these are hung at equal distances (indeed, each cylinder has its center of gravity at the midpoint of its own axis), whence, by the things previously demonstrated, the center of gravity of the magnitude composed of all [these] magnitudes divides the line XM so that the part toward X is double the remainder. Let it be divided thus, and let Xa be double aM, then point a is the center of gravity of the inscribed figure.

Let $A U$ be bisected at point e, eX will be double M E; but Xa is doubleaM, whenceeE will betripleEa. Further, AE istripleEN, thusit isclear that EN is greater than Ea, and for that reason point a, which is the center of the inscribed figure, more nearly approaches to the base of the conoid than [does] N. And sinceas $A E$ isto $E N$, so the removed part $e E$ is to the removed part Ea, the remainder will beto the remainder (that is, Ae[will be] to Na) as AE isto EN. ThereforeaN is onethird

[^0]of $A e$, and onesixth of $A U$.
Further, the cylinders of the circumscribed figure will be shown in the same way to exceed one another equally, the excess being equal to the least of them, and to have their centers of gravity equidistant along line $\mathrm{e} M$. H ence if eM is divided at p so that ep is double the remainder $p M$, then p will bethe center of gravity of the whole circumscribed magnitude, and since ep is double pM , and Ae is less than double EM (for these are equal), all AE is less than triple Ep, whence Ep will be greater than EN. And since eM is triple M p, and ME plus double eA is likewise triple M E, all AE plus Ae will be triple Ep. But AE is triple EN, so the remainder Ae will be triple the remainder pN . Therefore $N p$ is onesixth of $A U$. But these were the things to be proved. And from this it is manifest that:

[COROLLARY]

To a parabolic conoid, onefiguremay beinscribed and another circumscribed so that their centers of gravity may be made less distant from N than any assigned length.

In fact, if a line is taken six times the assigned length, $\{265\}$ and the axes of the cylinders composing those figures are made less than the said line, then the distances between the [respective] centers of gravity of these [two] figures and the point N will [both] be less than the assigned line.

The same [proposition], otherwise [demonstrated]:
Let CD be the axis of a conoid, so divided at 0 that CO is double OD. It must be shown that the center of gravity of the inscribed figure lies in OD, while the center of the circumscribed [figure] lies in CO.

As above, the figures are intersected by a plane through the axes and through C. N ow, cylinders SN, TM, VI, and XE are to one another as the squares on lines SD, TN, VM , and XI; and these are to one another as arelines N C, CM , CI and CE, which moreover exceed one another equally, and this excess is equal to the least [of them], which is CE; and cylinder TM equals cylinder QN, while cylinder VI equals cylinder PN, and cylinder XE equals cylinder LN ; therefore cylinders SN, QN, PN and LN exceed one another equally and the excess is equal to the least of these, that is, to
 cylinder LN. But the excess of cylinder SN over cylinder QN is a ring of height QT (or ND) and of breadth SQ, the excess of cylinder QN over cylinder PN is a ring of breadth QP; and finally the excess of cylinder PN over cylinder LN is a ring of breadth PL. H ence the said ringsSQ, QP, PL areequal [in volume] to one another and to cylinder LN. Ring ST is therefore equal to cylinder XE; ring QV, double
ring ST, is equal to cylinder VI, which is likewise double the cylinder XE; and for the same reason, ring PX will be equal to cylinder TM , and cylinder LE [equal] to cylinder SN.

Therefore along the balance KF, which joins the midpoints of linesEI and DN and is cut into equal parts by points H and G , there are magnitudes (that is, cylinders SN , TM VI, and XE) of which the centers of gravity are respectively K, H, G and F. Further, we have another balance, $M \mathrm{~K}$, which isone-half FK , and which is divided into as many equal parts by as many points, that is, [lines] M H, H N and NK; and on this there are other magnitudes equal in number and size to those found on
 the balance FK, having their centers of gravity at points $\mathrm{M}, \mathrm{H}, \mathrm{N}, \mathrm{K}$ and being arranged in the same order. In fact, cylinder LE has its center of gravity at M and is equal to cylinder SN , which has its center of gravity at K , ring PX has its center of gravity at H and is equal to the cylinder TM , of which the center of gravity is \{266\}at H, ring QV , having its center of gravity at N, is equal to cylinder VI, of which the center is G, finally, ring ST, having its center of gravity at K, equals cylinder XE of which the center is at F. Therefore the center of gravity of [each of] the said magnitudes divides the [respective] balance in the same ratio. But their center [of gravity] is unique, and is therefore at some point common to both balances, let this be Y. H ence $F Y$ will be to $Y K$ as $K Y$ is to $Y M$, therefore $F Y$ is double $Y K$; and, $C E$ being bisected at $Z, Z F$ will be double $K D$, and consequently ZD will betripleDY. But CD istripleD 0 , thereforelineD 0 is greater than DY, and hence the center of gravity Y of the inscribed figure is closer to the base than is the point 0 . And since as CD is to $D 0, s 0$ the removed part ZD is to the removed part $D Y$, then the remainder $C Z$ will also be to the remainder $Y O, a s C D$ is to $D O$, that is, $Y O$ will be one-third of $C Z$, or onesixth of $C E$.

By the same procedure we may show, on the other hand, that the cylinders of the circumscribed figure exceed one another equally, that their excesses are equal to the minimum cylinder, and that their centers of gravity are situated at equal distances along balance $K Z$, and likewise the rings equal to the cylinders are disposed in a like manner along the balance $K G$, which is one-half of balance $K Z$, and that hence the center of gravity R of the circumscribed figure divides the balance so that $Z R$ is to RK as $K R$ is to RG. Therefore ZR will be double RK; but CZ will be equal to line KD, and not its double, hence all CD will be less than triple $D R$, and so line $D R$ is greater than $D 0$, or the center of gravity of the circumscribed figure is farther from base than is the point 0 . And since $Z K$ is triple $K R$, and KD plus double ZC is triple KD, all CD plus CZ will be triple DR. But CD is triple DO, hence the remainder CZ will be triple the other
remainder RO, that is, OR is one-sixth of EC. W hich was the proposition. These things first demonstrated, it will be proved that:

[PROPOSITION 3]

The center of gravity of a parabolic conoid dividesitsaxisso that the part toward the vertex is double the part toward the base.

The parabolic conoidal [figure] whose axis is $A B$ is divided at N so that AN is double NB. It is to be showed that the center $\{267\}$ of gravity of the conoid is point N. If, indeed, it is not N, it is below this [point] or above it. First let it bebelow, at X, and draw LO equal to NX, and let LO be divided anywhere at S; and whatever ratio BX plus $O S$ has to $O S$, let the[volume of the] conoid haveto the solid R.

Inscribe in theconoid a figure madeup of cylinders of equal height in such a way that between its center of gravity and the point N , [a distance] less than LS shall be intercepted, and let the excess by which the conoid exceeds it be less than the solid R. It is manifest that this can be done. Thus let the inscribed [figure] be that of which the center of gravity is I ; now IX will be greater than $S O$, and since as $X B$ plus $S O$ is to $S O$, so the
 conoidal [figure] is to R, and further, R is greater than the excess by which the conoid exceeds it, the ratio of the conoid to the said excess will be greater than $B X$ plus $O S$ to SO, and by division, the inscribed figure will have a greater ratio to the said excess than $B X$ has to $S O$. But $B X$ has to $X I$ a smaller ratio than to $S 0$, therefore the inscribed figure will have to the remaining parts a much greater ratio than BX [has] to XI. Therefore the ratio of the inscribed figure to the remaining parts will be that of some other line to XI , which [line] must be greater than BX. Let it be M X. Thus we have X, the center of gravity of the conoid, but the center of gravity of the inscribed figure is 1 . Therefore the center of gravity of the remaining portions, by which the conoid exceeds the inscribed figure, will be in the line $X M$, and at that point wherein it terminates so that the ratio of the inscribed figureto the excess by which the conoid surpasses it is the same as [the ratio of] this [line] to XI. But it has been shown that this ratio is that of MX to XI ; therefore M will bethe center of gravity of the portions by which the conoid exceeds the inscribed figure. But that certainly cannot be, for if a plane isdrawn through M, parallel to the base of the conoid, all the said [excessive] parts will lie on the same side of it and will not be divided by it. Therefore the center of gravity of the conoid is not below point N .

But neither is it above. Indeed, if this is possible, let it be [at] H ; and as above, draw LO equal to HN and divide this anywhere at S; and whatever ratio BN plus SO has to SL, let the conoid have to R. Circumscribe about the conoid a figure [composed] of cylinders, as before, exceeding the conoid by a quantity less than the solid R, and let the line between the center of gravity of the circumscribed figure and point N be less than SO. The remainder UH will be $\{268\}$ greater than LS, and since as $B N$ plus $O S$ is to $S L$, so the conoid is to $R(R$ being greater than the excess by which the circumscribed figure exceeds the conoid), then BN plus SO has a smaller ratio to SL than the conoid has to the said excess. But BU islessthan BN plus SO , whileH U is greater than SL, whence the conoid has a much greater ratio to the said portions [of excess] than BU has to UH Therefore whatever ratio the conoid has to the said portions, some line greater than BU has to $U H$. Let this be $M U$, and since the center of gravity of thecircumscribed figureisU , whilethecenter of the conoid isH , and as the conoid is to the remaining portions, so M U is to UH , then M will be the center of gravity of the remaining portions, which likewise is impossible. Therefore the center of gravity of the conoid is not above the point N But it was demonstrated not to be below it, therefore it necessarily lies at TV And by the same reasoning this may be proved for a conoid cut by a plane that is not at right angles to its axis.

The same is shown in another way, as is clear from the following

[PROPOSITION 4]

The center of gravity of a parabolic conoid falls between the center of the circumscribed figure [of cylinders] and the center of the [similar] inscribed figure.

Let there be a conoid with axis AB; the center [of gravity] of the circumscribed figure is C , whilethat of the inscribed figure is $0 . I$ say that the center [of gravity] of the conoid lies between points C and 0 . Indeed, if it does not, it lies either above, or below, or at one of these [points]. Let it be below, as for example at R, then since R is the center of gravity of the whole conoid and 0 is the center of gravity of the inscribed figure, the center of gravity of all theother portions by which theinscribed figureis exceeded by the conoid will lie on the extension of line OR beyond R, and precisely at that point which terminates it in such a way that whatever ratio the said portions have to the inscribed [figure], that is also the ratio of line 0 R to the line intercepted between R and that point. Let this ratio be that of $O R$ to $R X$, then X will either fall outside the conoid, or insideit,
or in its base. That it should fall outside, or in the base, is clearly \{269\} absurd. Falling inside, since XR is to RO as the inscribed figure is to the excess by which this is surpassed by the conoid, then we assume that whatever the ratio of BR to RO, such also is that of the inscribed figure to the solid K, which must necessarily be less than that excess.
N ext, inscribe another figure which shall be exceeded by the conoid by an excess less than A "; its center of gravity will lie between 0 and C . Let this beU ; since the first figure is to K as $B R$ is to RO, and since on the other hand the second figure, of which the center is U, is greater than the first, and is exceeded by the conoid with an excess less than K, we shall have that whatever the ratio of the second figure to the excess by which it is surpassed by the conoid, such also isthe ratio of somelinegreater than BR to lineRU But the center of gravity of the conoid is R, while that of the inscribed figure is $£ 7$; therefore the center of gravity of the remaining portions will lieoutsidetheconoid, below B, which is impossible.

By the same procedure it will be shown that the center of gravity of this same conoid does not lie on lineCA. Then, that it is neither of the points C or 0 is manifest. In fact if we suppose this, and describe other figures such that the inscribed is greater than the figure whose center [of gravity] is 0 , and that which is circumscribed is less than the figure whose center is C , the center of gravity of the conoid will fall outside the centers of gravity of these figures, which is impossible, as we have just concluded. It follows, then, that it lies between the center of the circumscribed figure and that of the inscribed figure. Being thus, it must necessarily lie in that point that divides the axis in such a way that the part toward the vertex is double the remainder, since indeed figures can be inscribed and circumscribed such that the lineslying between their centers of gravity and the said point may be less than any given line. Thus anyone who declared the contrary [of the above] would be led to the absurdity that the center [of gravity] of the conoid would not lie between the centers of gravity of the inscribed and circumscribed figures.

[LEMMA]

If there are three lines in [continued] proportion, and the ratio of the least to the excess by which the greates exceedstheleast isthe same as that of somegiven lineto twothirds of the excess by which the greates exceedsthemiddle[line] \{270\} and again if the ratio of the greatest plus double the middle [line] to triple the greatest plus triple that middle is the sameas the ratio of some[other] given line to the excess of the greatest over the smallest, then thesum of thosetwo given linesis onethird of thegreatest of thethree proportional lines.

Let there bethree lines, $A B, B C \quad B F$, in [continued] proportion, and let the ratio of $B F$ to $A F$ be that of $M S$ to two-thirds of $C A$, also let the ratio of $A B$ plus $2 B C$ to

3AB plus $3 B C$ be that of another [line] $S N$ to $A C$. It is to be demonstrated that $M N$ is onethird of $A B$.

Since $A B, B C$, and $B F$ are in continued proportion, $A C$ and $C F$ are also in that same ratio, therefore, as $A B$ to $B C$, so $A C$ is to $C F$, and as $3 A B$ is to $3 B C$, so $A C$ is to $C F$ Whatever ratio $3 A B$ plus $3 B C$ has to $3 C B, A C$ has to some smaller linethan $C F$; let this be CO. Then by composition and inversion of ratios, $O A$ has to $A C$ the same ratio that $3 A B$ plus $6 B C$ has to $3 A B$ plus $35 C$; further, $A C$ has to $S N$ the same ratio as $3 A B$ plus $3 B C$ to $A B$ plus $25 C$; by equidistance of ratios, therefore, $O A$ has to.$M S$ the same ratio as $3 A B$ plus $65 C$ to $A B$ plus $2 B C$. But the ratio of 3,45 plus $6 B C$ to $A B$ plus $2 B C$ is $3(A B$ plus 25 C), therefore $A 0$ is triple SN .
N ext, since OC is to CA as 3C6 is to 3AB plus 3C5, while as CA is to CF, so $3 A B$ is to 35 C , then by equidistance of ratios in perturbed proportion, as O C is to CF , so 3,45 will beto 3 AB plus 35 C ; and by inversion of ratios, as 0 F is to FC , so 3 BC isto 3 AB plus $35 C$. Also, as $C F$ is to $F B$, so $A C$ is to $C 5$, and $3 A C$ is to $35 C$; therefore, by equidistance of ratios in perturbed proportion, as 0 F is to FB , so 3 AC is to 3(AB plus 5 C). H ence all $O B$ will be to $B F$ as $6 / 15$ is to 3 ($A B$ plus $-B C$), and since $F C$ has the same ratio to $C A$ that $C B$ has to $B A$, then as $F C$ is to $C 4$, so $B C$ will beto $.6,4$, and by composition, as $F A$ is to $A C$, so is the sum of $B A$ plus $A C$ to 5,4 , as likewise [are] their triples. Therefore, as $F A$ is to $A C$, so $3 B A$ plus $35 C$ is to $3 A B$; whence as $F A$ is to two-thirds $A C$, so $3,6,4$ plus 35C is to two-thirds of 3BA, which is 2BA. But asFA is to two-thirdsAC, so F5 isto M S, therefore as $F B$ is to $\mathrm{M} S$, so 35,4 plus $3 B C$ is to 25,4 . But as $0 B$ is to $F B$, so $6 / 15$ was to 3(AB plus5C). Therefore, by equidistance of ratios, OB has to $M S$ the same ratio as $6 A B$ to $25 / 1$, whence $M S$ is one-third 05 . And it was shown that $S N$ is one-third $A O$, hence it is clear that MN is likewise one-third AB . Q.E. D.
\{271\}

[PROPOSITION 5]

The center of gravity of any frustum cut from a parabolic conoid lies in the straight line that is the axis of this frustum this being divided into three equal parts, the [said] center of gravity lies in the middle [part] and so divides this [part] that the portion toward the smaller basehas, to the portion toward thelarger base, the sameratio as that of the larger base to the smaller.

From a conoid whose axis is RB, cut a solid with axis BE , the cutting plane being parallel to the base. Let it be cut also by another plane, perpendicular to the base, this section giving the parabola $\cup R C$, the sections of the cutting plane and of the base being the straight lines LM and UC. The diameter of ratios, or parallel diameter, will be RB, while LM and UC will be ordinately applied. ${ }^{4}$
4. Galileo's "diameter of ratios" in the diagram would now be called the axis of ordinates, while his "ordinates" are our abscissae

Let the line EB be divided into three equal parts, of which the middle one is Q ; this is further divided at I so that whatever ratio the base of diameter UC has to the base of diameter LM (that is, [the ratio] of the square of $U C$ to the square of LM), Q I has also to IY It is to be demonstrated that the center of gravity of the frustum ULMC isI.

D raw $N S$ equal to $B R$, and let $S X$ be equal to $E R$, and to NS and SX take the third proportional SG, and as $N G$ is to $G S$, let $B Q$ be to 10 . It does not matter whether point 0 falls above or below LM And since in section URC the lines LM and UC are ordinately applied, as the square of $U C$ is to the square of $L M$, so line $B R$ will beto $R E$; and further as the square of $U C$ to
 the square of LM , so is $\mathrm{Q} \mid$ to $I Y$, and as $B R$ is to $R E$, so is $N S$ to $S X$; therefore Q I is to I Y as NS is to SX W hence as $\mathrm{Q} Y$ is to YI , so will $N S$ plus SX be to $S X$, and as EB is to YI , so is triple N S plus triple $S X$ to $S X$ Further, as EB is to $B Y$, so triple the sum of $N S$ and $S X$ is to the sum of $N S$ and $S X$; therefore as EB is to BI, so is triple N S plus tripleSX to N S plus double SX Therefore the three lines N S, SX, and GS are in continued proportion, and whatever the ratio of $S G$ to $G N$, the same will be that of some assigned line 01 to two-thirds of EB (that is, of N X), and whatever ratio NS plus double $S X$ has to tripleN S plustripleSX, the same will bethat of some assigned line $\{272\} \mid B$ to $B E$ (that is, to $N X$). Therefore, by what was demonstrated above, these [assigned] lines taken together will be onethird of NS (that is, of RB). Therefore RB is triple BO, whence BO will be the center of gravity of the conoid URC.

N ow let A bethecenter of gravity of the conoid LRM, then the center of gravity of the frustum ULMC lies in line 0 B , and at the point where this terminates so that whatever ratio the frustum ULMC has to the portion LRM, the line AO has that same ratio to the intercept between 0 and the said point [of termination]. SinceRO is two-thirds of RB, RA is two-thirds of RE, and the remainder AO will betwo-thirdsthe remainder EB. And since as the frustum ULMC is to the portion LRM, so $N G$ is to $G S$, and as NG is to GS, so is two-thirdsEB to OI, and two-thirds EB is equal to line $A O$, then as the frustum ULMC is to the portion LRM, so AO is to OI

Therefore it is clear that the center of gravity of the frustum ULMC is point /, and the axis is so divided [by it] that the part toward the smaller base is to the part toward the larger base as double the larger base plus the smaller is to double the smaller plus the larger. W hich is the proposition, but more elegantly expressed.

[LEMMA]

If any number of magnitudes are so arranged that the second addsto the first double the first, and the third adds to the second triple the first, while the fourth adds to the third quadruplethefirst and so every following magnitude exceeds the preceding one by a multiple of the first magnitude according to its number in order if I say such magnitudesarearranged on a balanceand suspended at equal distances, then the center of equilibrium of the whole composite divides that balance so that the part toward the smaller magnitudes is triple the remainder

P				
L	X	Q	S	T
a	a	a	a	a
a	a	a	a	A
a	a	a	b	
a	a	b	F	
a	b	b		
b	b	c		
b	b	G		
b	c			
b	c			
c	d			
c	H			
c				
d				
d				
e				
K				

Let LT be the balance, and the magnitudes hanging from it, of the kind described, areA, F G H, K, of which A is hung first, from T I say that the center of equilibrium cuts the balance TL so that the part toward Tis triple the remainder Let TL be triple LI, and SL triple LP, and QL [triple] LN , and LP [triple] LO, then IP PN NO OL will be equal. Take at F a magnitude of 2 A , and at G another, 3 A , at $\mathrm{H}, 4 \mathrm{~A}$, and so on, and let thesebethe magnitudes [marked] a in the diagram. And do the same in magnitudes F G H K; \{273\} indeed, let the magnitude in the remainder of F, which is b, be equal to a, and in G take 2 b , in $\mathrm{H}, 3 \mathrm{~b}$, etc., and let these bethe magnitudes containing 6 's. And in the same way takethose containing c's, d's, and e. Then all those in which a is marked are equal to [all in] K; the composite of all b'swill equal //, that of the c 's, G, that composed of all d's will be equal to F, and e[will equal] A itself. And sinceTI is doubleLI, / will be the point of equilibrium of magnitudes made up of all the a's, likewise, sinceSP is double PL, P will be the point of equilibrium of the composite of all thei's, and for the same cause, N will bethe point of equilibrium of the composite of all c's, 0 [will be that] of the composite of d 's, and L, of e itself.

There is thus a certain balance TL on which at equal distances there hang certain magnitudes $\mathrm{K}, \mathrm{H}, \mathrm{G} \mathrm{F}, \mathrm{A}$, and further, there is another balance LI on which at equal distances hang a like number of magnitudes, equal to and in the same order as those described. Indeed, there is a composite of all a's that hangs from /, equal to K hanging from L, and a composite of all 6 's that hangs from P, equal to H hanging from P; and likewise a composite of C 's that hangs from N. equal to G, and a composite of el's that hangs from 0 , equal to F; and e, hanging from L, is equal to A. W hence the balances are
divided in the same ratio by the center of [equilibrium of] the composites of magnitudes. But there is [only] one center of the composites of the said magnitudes, and it will be a common point of the lineTL and the line LI. Let this be X. And thus as TX is to XL, so $L X$ will be to XI , and all $T L$ to $L I$. But $T L$ is triple LI, whence $T X$ is triple $X L$.

[LEMMA]

B	FOD		G	E
$\stackrel{\square}{\text { a }}$	a	a	${ }^{\text {a }}$	a
a	a	a	${ }^{\text {a }}$	
a	a	a	b	
a	a	a	c	
a	a	a		
a	a	-		
a	a	c		
a	a	c		
a	a	${ }^{\text {c }}$		
a	a			
a	c			
$\stackrel{\text { a }}{ }$	c			
$\stackrel{\text { a }}{ }$	${ }_{c}$			
a	c			
$\stackrel{\text { a }}{\text { c }}$	$\frac{c}{c}$			
${ }^{\text {c }}$				
c				
${ }^{\text {c }}$				
$c^{\text {c }}$				
${ }_{\text {c }}^{\text {c }}$				
c				
c				

If any number of magnitudes are taken, and the second adds above thefirst, triplethefirst, while the third exceeds the second by fivetimesthefirst, and thefourth exceeds the third by seven timesthefirst, and so on, each addition over the preceding being a multiple of the first according to the successive odd numbers (as the squares of lines that equally exceed one another and of which the excess is equal to the first thereof), and if these be hung at equal distances along a balance, then the center of equilibrium of all combined will divide the balance so that the part toward the lesser magnitudes is more than triple the remainder, but one distance being removed, it will be less than triple.
\{274\}
Let there be on the balance BE magnitudes such as those described, from which let then be removed some magnitudes arranged among themselves as in the preceding [lemma], let [for example] all the a's [in the present diagram betaken away]. The remainder will be the c's, [still] arranged in the same order [as was the whole], but wanting the greatest [magnitude]. Let ED betripleDB, and GF tripleFB; D will be the center of equilibrium of everything composed of the a's, while F will be that of the c's, hence the center of the compound of [both] a's and c's falls between D and F And thus it is manifest that EO is more than triple OB, while GO is less than triple OB. W hich was to be proved.

[PROPOSITION 6]

If any cone or portion of a conehas onefigure of cylinders of equal height inscribed to it, and another circumscribed, and if its axis is divided so that the part intercepted between the point of division and the vertex is triple the remainder then the center of gravity of the inscribed figure will be closer to the base of the cone than [will] the point of division, but the center of gravity of the circumscribed [figure] will be closer to the vertex than [will] that same point.

Let there be a cone with axis $\mathrm{N} M$, divided at S so that NS is triple the remainder SM, I say that any figure as described that is inscribed in the cone has its center of gravity in the axis $N M$, and that it approaches more nearly the base of the conethan does the point S, whilethe center of gravity of O ne circumscribed is likewise in the axis NM , but closer to the vertex than is S .

Assume an inscribed figure of cylinders whose axes M C, $C B, B E, E A$ are equal. Thus this first cylinder, of which the axis is $M C$, has, to the cylinder with axis $C B$, the same ratio as [that of] its base to the base of the other (since their altitudes are equal), and this ratio is the same as that which the square of $C N$ has to the square of $N B$. It is likewise shown that thecylinder with axis CB has to the cylinder with axis $B E$ the same ratio as that of the square of $B N$ to the square of $N E$; while the cylinder around axis $B E$ has to the cylinder around axis EA the ratio of the square of EN to the square of NA. M oreover, the lines NC, NB, EN , NA equally exceed one another, and their excess is equal to the least, namely $N A$. There are therefore magnitudes(i.e. theinscribed cylinders) $\{275\}$ which havesuccessively to oneanother the ratio of squared lines equally exceeding one another, of which the excess is equal to the least. T hus these arearranged on the balance 77 , with thesingle centers of gravity therein, and at equal distances. H ence by those things demonstrated above, it is evident that the center of gravity of all these compounded in the balance TI so divides it that the part toward T is more than triple the remainder. ${ }^{5}$ Let this center be 0 , then T 0 is more than triple 0 I But TN is triple IM , therefore all M 0 will be less than onequarter of all $\mathrm{M} N$, of which MS was assumed to be one-quarter It is therefore evident that point 0 comes nearer the base of the cone than does S.

N ow let the circumscribed figure consist of cylinders whose axes M C CB, BE, EA, AN are equal to one another. As with the inscribed [figure], these are shown to be to one another as the squares of lines N M N C BN N E A N , which equally exceed one another and whose excesses equal the least, AN. W hence, from what went before, the center of gravity of all the cylinders thus arranged (and let this beU) so divides the balanceRI that the part toward R (that is, $R U$) is more than triple the remainder $U I$, while $T U$ will be less than triple the same. But NT is triple IM, therefore all UM is greater than onequarter of all $M \mathrm{~N}$, of which MS was assumed to be onequarter. And thus point U is closer to the vertex than is point S. Q.E.D .
[Proposition 7]

Given a cone, a figure can be inscribed and another circumscribed to it, made up of cylinders having equal heights, so that theline intercepted between the center of gravity of the circumscribed [figure] and that of the inscribed [figure] is less than any assigned line.

Given a cone with axis $A B$, and given further a straight line K, I say, let the cylinder L be drawn equal to that [which may be] inscribed in the cone, having an altitude of one-half the axis $A B$. D ivide $A B$ at C so that $A C$ istriple $C B$; and whatever ratio $A C$ has to K, let this cylinder L have to some solid, X Circumscribe about the cone a figure of cylinders having equal altitudes, and inscribe another one, so that the circumscribed exceedstheinscribed by aquantity less than the solid X Let the center of gravity of tthe circumscribed $\{276\}$ the solid X Let the center of gravity of the circumscribed [figure] be E, which falls above C, while the center of the inscribed one is S , falling below C . I now say that line ES is less than K.

For if it is not, put CA equal to $E O$, then since $0 E$ has to K the same ratio as that of L to X, the inscribed figure is not less than cylinder L, and the excess by which the circumscribed
 figure surpasses it is less than solid X; therefore theinscribed figure has to the said excess a greater ratio than 0 E will have to K. But the ratio of $O E$ to K is not less than that of $O E$ to ES, since ES cannot be assumed less than K^{\prime}, therefore the inscribed figurehas a greater ratio to the excess by which the circumscribed [figure] surpasses it than OE hasto ES. H ence whatever ratio the inscribed [figure] has to the said excess, some line greater than EO will have this to the line ES. Let this[line] beER. N ow, the center of gravity of the inscribed figure is S, while that of the circumscribed is E; hence it is evident that the remaining portions by which the circumscribed exceeds the inscribed [figure] have their center of gravity in lineRE, and at that point where it is terminated so

[^1]that whatever ratio the inscribed [figure] has to those portions, the line intercepted between E and that point has to line ES. But RE has this ratio to ES ; hence the center of gravity of theremaining portions by which thecircumscribed figureexceedstheinscribed will be R, which is impossible, since indeed the plane through R [drawn] parallel to the base of the cone does not cut these portions. Therefore it is false that line ES is not less than K, and hence it will be less.

M oreover, in a way not dissimilar, this may be demonstrated to hold for pyramids. From this it is manifest that:

Abstract

[COROLLARY] About a given cone, a figurecan becircumscribed, and [within it] another inscribed, of cylinders having equal altitudes, such that the lines between their centers of gravity and the point which divides the axis of the cone so that the part toward the vertex is triple the remainder are less than any given line.

For indeed, as was demonstrated, the said point dividing the axis in the said way is always found between the centers of gravity of the circumscribed and inscribed [figures], and it is possible for the line between those same centers to be \{277\} less than any assigned line, so that which is intercepted between either of the two centers and the point that thus divides the axis must be much less than this assigned line.

[PROPOSITION 8]

The center of gravity of any cone or pyramid so divides the axis that the part toward the vertex is triplethe remainder toward the base.

Given the cone with axis $A B$, divided so that $A C$ is triple the remainder $C B$, it is to be shown that C is the center of gravity of the cone. For if it is not, the center of the cone will be either above or below point C. First let it be below, at E, and draw lineLP equal to $C E$, and dividethis anywhere at N, and whatever ratio BE plus PN shall have to PN , let this cone have to some solid, X Inscribe in the cone a solid figure made up of cylinders of equal height, the center of gravity of this shall be less distant from point C than [the length of] line LTV, and the excess by which the cone exceeds [this figure] will be less than solid X It is clear from what has been demonstrated that these things can be done. Let this solid
 figure which we assume have its center of gravity at / Then line IE will be greater than NP, since LP is equal to CE; and 1C [is] less than LN, and since BE plus N P is to N P as the cone is to X, and moreover the excess by which the cone
exceeds the inscribed figure is less than solid X, the cone will have a greater ratio to the said excess than that of BE plus NP to NP, and by division, the inscribed figure has a greater ratio to the excess by which the cone exceeds it than BE has to NP M oreover, BE has to $E l$ a still smaller ratio than it has to $N P$, since IE is greater than $N P$, whence the inscribed figure has a much greater ratio to the excess by which the cone surpasses it than BE has to El .

Therefore whatever ratio the inscribed [figure] has to the said excess, somegreater line BE has to line El. Let this be M ; since M E is to El as the inscribed figure is to the excess
 by which the cone surpasses it, and [if] E is the center of gravity of the cone, while / is the center of gravity of the [figure] inscribed, then M will bethecenter of gravity of the remaining portions by which the cone exceeds the inscribed figure in it, which is impossible. Therefore the center of gravity of the cone is not below point C. $\{278\}$

But neither is it above. For, if possible, let it be R, again take the line $L P$, cut anywhere at N Whatever ratio $B C$ plus $N P$ has to NL, let the cone have to X, and likewise circumscribe about the cone a figure that exceeds it by a lesser quantity than the solid X; thelineintercepted between its center of gravity and C shall be less than NP N ow let there be circumscribed [a figure] having center of gravity 0 , the remainder OR will begreater than NL. And since as BC plusPN isto NL, so the cone is to X, but the excess by which the circumscribed [figure] surpasses the cone is less than X, and $B O$ is less than $B C$ plus $P N$, while $O R$ is greater than $L N$, the cone will have a greater ratio to the remaining portions by which it is exceeded by the circumscribed figure than BO has to O R. Let $\mathrm{M} O$ have that ratio to $O R$, then $\mathrm{M} O$ will be greater than $B C$, and M will bethe center of gravity of the portions by which the cone is exceeded by the circumscribed figure, which is contradictory Therefore the center of gravity of this cone is not above the point C , but neither is it below, as was shown, therefore it is C itself. And the same may be demonstrated in the above way for any pyramid.

[LEM MA] ${ }^{6}$

If therearefour lines in [continued] proportion, and whatever ratio the least of these has to the excess by which the greatest exceeds the least, that same[ratio] is had by some [assumed] line to $3 / 4$ of the excess by which the greatest exceeds the second [line] and whatever ratio a line equal to thegreatest plusdoublethesecond plustriplethethird has to a line equal to four times the sum of the greatest, the second, and the third together that same ratio is had by [another] assumed line to the excess by which the greatest exceedsthesecond and thesetwo [assumed] linestaken together will beone quarter of the greatest of the original lines.
 to four times the sum of $A B, B C$, and $B D$, let H G have to $A C$. It is to be shown that $H F$ is onequarter of $A B$.
\{279\}
Since $A B . B C B D$, and $B E$ areproportional, then $A C, C D$, and $D E$ will bein that same ratio, and as four times the sum of $A B, B C$, and $B D$ is to $A B$ plus $2 B C$ plus $3 B D$, so the quadruple of $A C$ plus $C D$ plus $D E$ (that is, $4 A E$) is to $A C$ plus $2 C D$ plus $3 D E$; and thus is $A C$ to HG . Therefore as $3 A E$ is to $A C$ plus $2 C D$ plus $3 D E$, so is three-quarters of $A C$ to HG . M oreover, as $3 A E$ is to $3 E B$, so is threequarters of $A C$ to GF . H ence, by the converse of [Euclid] $V, 24$, as 3 AE is to $A C$ plus $2 C D$ plus $3 / 3.6$, so is threequarters of $A C$ to $H F$; and as $4 A E$ is to $A C$ plus $2 C D$ plus $3 D B$ (that is, to $A B$ plus $C B$ plus $B D$), so $A C$ is to $H F$. And permuting, as $4 A E$ is to $A C$, so $A B$ plus $C B$ plus $B D$ is to HF . Further, as $A C$ is to $A E$, so $A B$ is to $A B$ plus $C B$ plus $B D$. H ence, by equidistance of ratios in perturbed proportion, as $4 A E$ is to $A E$, so $A B$ is to $H F$. W hence it is clear that $H F$ is onequarter of $A B$.

[PROPOSITION 9]

Any frustum of a pyramid or cone cut by a plane parallel to its base has its center of gravity in the axis, and this so divides it that the part toward the smaller base is to the remainder asthreetimesthegreater baseplusdoublethemean proportional between the greater and smaller bases plus the smaller base is to triple the smaller base plus the said double of the mean proportional distance plus the greater base.

From a cone or pyramid with axis AD, cut a frustum by a plane parallel to the base having axis UD, and whatever ratio triple the larger base, plus double the mean proportional [of both bases] plus the smaller [base], has to triple the smaller, plus double the [above] mean proportional plus the greatest, let U 0 have to OD . It is to be shown that 0 is the center of gravity of the frustum.

Let $U M$ be onequarter of $U D$. D raw line $H K$ equal to $A D$, and let $K X$ equal $A U$, let XL be the third proportional to HX and KX, while XS is the fourth proportional. W hatever ratio HS has to SX, let M D have to a line from 0
 in the direction of A, and let this be $O N$ N ow since the

[^2]larger base is to the mean proportional between thelarger and the smaller as DA is to AU (that is, as HX is to XK), and the said mean proportional is to the smaller as KX is to XL , then the larger, the mean proportional, and the smaller base will be in the ratio of lines HX XK, and XL.

Thus as triplethelarger baseplusdoublethemean \{280\}proportional plusthesmaller is to triple the smaller plus double the mean proportional plus the larger (that is, as $\cup 0$ is to OD), so is triple HX plus double XK plus XL to triple XL plus double XK plus XH And, by composition and inverting, OD will beto DC/as H X plus double XK plustriple XL is to four times the sum of $H X X K$, and $X L$. Therefore there are four lines in continued proportion, HX XK, XL, and XS', and whatever ratio XS has to SH, some assumed line $\mathrm{N} O$ has to threequarters of DU (that is, to threequarters of HK). Further, whatever ratio HX plus double XK plus triple XL has to four times the sum of HX XK, and XL, some assumed line OD has to DU (that is, to HK). Hence, by what was demonstrated, $D N$ will beone-quarter of $H X$ (that is, of $A D$), whencepoint N will bethe center of gravity of the cone or pyramid having axis AD.

Let I be the center of gravity of the pyramid or cone having axis AU . It is then clear that the center of gravity of the frustum lies in line IN extended beyond N, and at that point of it which, with point N , intercepts a line to which IN has the ratio that the frustum cut off has to the pyramid or conehaving axisA U. Thusit remainsto be shown that IN has to $N O$ the same ratio that the frustum has to the cone whose axis is U But as the cone with axis DA is to the cone with axis A U, so is the cube of $D A$ to the cube of $A U$, that is, as the cube of $H X$ to the cube of $X K$; and this is the ratio of $H X$ to $X S$. Whence, dividing, as H S is to SX , so the frustum having axis DU will be to the cone or pyramid having axis $\cup \mathrm{A}$. And as HS is to SX , so also MD is to ON , whence the frustum is to the pyramid having axis U as MD is to N 0 . And since $A N$ isthreequarters of $A D$, and $A I$ is threequarters of $A U$, the remainder $I N$ will bethreequarters of the remainder UD, wherefore IN will be equal to MD. It was demonstrated that MD is to $N O$ as the frustum is to the cone A U; therefore it is clear that IN has also this same ratio to N 0 . W hence the proposition is clear.

Finis ${ }^{7}$

7. The end of the original printed edition.

Galileo G alilei, Discourses and M athematical DemonstrationsC oncerning Two N ew SciencesPertaining to M echanicsand Local M otions. Appendix translated by Stillman Drake, University of Wisconsin Press, M adison, 1974: 261-280. Additional selection from this source:

[^0]: 2. Both Clavius and Guidobaldo (note 1, above) believed this assumption to beg the question. The latter was satisfied by Galileo's explanation, sent to him in 1588 with a redrawn diagram showing all the weights as touching horizontally; cf. p. 198.
 3. It was a well known property of the parabola that the squares on the abscissae are in the ratio of the ordinates, but cf. note 4, below.
[^1]: 5. Because TI omits one distance, NA.
[^2]: 6. A manuscript copy submitted in 1587 (note 1, above) exhibits some variants from the printed text, but none of a substantial character.
